Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-20T02:49:24.786Z Has data issue: false hasContentIssue false

Subcritical transitional flow in two-dimensional plane Poiseuille flow

Published online by Cambridge University Press:  18 September 2024

Z. Huang
Affiliation:
Department of Fluid Machinery and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
R. Gao
Affiliation:
Department of Fluid Machinery and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
Y.Y. Gao
Affiliation:
Department of Fluid Machinery and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
G. Xi*
Affiliation:
Department of Fluid Machinery and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
*
Email address for correspondence: [email protected]

Abstract

Recently, subcritical transition to turbulence in the quasi-two-dimensional (quasi-2-D) shear flow with strong linear friction (Camobreco et al., J. Fluid Mech., vol. 963, 2023, R2) has been demonstrated by the 2-D mechanism at $Re = 71\,211$, and the nonlinear Tollmien–Schlichting (TS) waves related to the edge state were approached independently of initial optimal disturbances. For 2-D plane Poiseuille flow, transition to the fully developed turbulence requires that the Reynolds number is several times larger than the critical Reynolds number $Re_c$ (Markeviciute & Kerswell, J. Fluid Mech., vol. 917, 2021, A57). In this paper, we observed the subcritical transitional flow in 2-D plane Poiseuille flow driven by the nonlinear TS waves by both linear and nonlinear optimal disturbances ($Re < Re_c$) with different quantitative edge states. The nonlinear optimal disturbances could trigger the sustained subcritical transitional flow for $Re \geqslant 2400$. The initial energy for nonlinear optimal disturbance is more efficient than the linear optimal disturbance in reaching the subcritical transitional flow for $2400 \leqslant Re \leqslant 5000$. Moreover, the initial energy of linear optimal disturbance is larger than the energy of its edge state. The nonlinear TS waves along the edge state are formed by the nonlinear optimal disturbances to trigger transitional flow, which agrees well with the main conclusions of Camobreco et al. (J. Fluid Mech., vol. 963, 2023, R2), while the required $Re$ of 2-D plane Poiseuille flow is much smaller.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boffetta, G. & Ecke, R.E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44 (1), 427451.CrossRefGoogle Scholar
Butler, K.M. & Farrell, B.F. 1992 Three-dimensional optimal perturbation in viscous shear flow. Phys. Fluids A 4, 16371650.CrossRefGoogle Scholar
Camobreco, C.J., Pothérat, A. & Sheard, G.J. 2021 Transition to turbulence in quasi-two-dimensional MHD flow driven by lateral walls. Phys. Rev. Fluids 6 (1), 013901.CrossRefGoogle Scholar
Camobreco, C.J., Pothérat, A. & Sheard, G.J. 2023 Subcritical transition to turbulence in quasi-two-dimensional shear flows. J. Fluid Mech. 963, R2.CrossRefGoogle Scholar
Chapman, S.J. 2002 Subcritical transition in channel flows. J. Fluid Mech. 451, 3597.CrossRefGoogle Scholar
Cherubini, S. & Palma, P.D. 2015 Minimal-energy perturbations rapidly approaching the edge state in Couette flow. J. Fluid Mech. 764, 572598.CrossRefGoogle Scholar
Cherubini, S., Palma, P.D., Robinet, J.C. & Bottaro, A. 2011 The minimal seed of turbulent transition in the boundary layer. J. Fluid Mech. 689, 221253.CrossRefGoogle Scholar
Davis, S.J. & White, C.M. 1928 An experimental study of the flow of water in pipes of rectangular sections. Proc. R. Soc. Lond. A 119, 92107.Google Scholar
Drazin, P.G. & Reid, W.H. 1981 Hydrodynamic Stability. Cambridge University Press.Google Scholar
Eaves, T.S. & Caulfield, C.P. 2015 Disruption of SSP/VWI states by a stable stratification. J. Fluid Mech. 784, 548564.CrossRefGoogle Scholar
Falkovich, G. & Vladimirova, N. 2018 Turbulence appearance and nonappearance in thin fluid layers. Phys. Rev. Lett. 121, 164501.CrossRefGoogle ScholarPubMed
Farano, M., Cherubini, S., Robinet, J.C. & Palma, P.D. 2015 a Hairpin-like optimal perturbations in plane Poiseuille flow. J. Fluid Mech. 775, R2.CrossRefGoogle Scholar
Farano, M., Cherubini, S., Robinet, J.C. & Palma, P.D. 2015 b Subcritical transition scenarios via linear and nonlinear localized optimal perturbations in plane Poiseuille flow. Fluid Dyn. Res. 48, 061409.CrossRefGoogle Scholar
Hack, P.M.J. & Moin, P. 2017 Algebraic disturbance growth by interaction of Orr and lift-up mechanisms. J. Fluid Mech. 829, 112126.CrossRefGoogle Scholar
Huang, Z. & Philipp, M.J.H. 2020 A variational framework for computing nonlinear optimal disturbances in compressible flows. J. Fluid Mech. 894, A5.CrossRefGoogle Scholar
Jiménez, J. 1987 Bifurcations and bursting in two dimensional Poiseuille flow. Phys. Fluids 30, 36443646.CrossRefGoogle Scholar
Jiménez, J. 1990 Transition to turbulence in two-dimensional Poiseuille flow. J. Fluid Mech. 218, 265297.CrossRefGoogle Scholar
Karp, M. & Cohen, J. 2014 Tracking stages of transition in Couette flow analytically. J. Fluid Mech. 748, 896931.CrossRefGoogle Scholar
Kerswell, R.R. 2018 Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech. 50, 319345.CrossRefGoogle Scholar
Lin, C.C. 1944 On the development of turbulence. PhD thesis, California Institute of Technology.Google Scholar
Markeviciute, V.K. & Kerswell, R.R. 2021 Degeneracy of turbulent states in two-dimensional channel flow. J. Fluid Mech. 917, A57.CrossRefGoogle Scholar
Mellibovsky, F. & Meseguer, A. 2015 A mechanism for streamwise localisation of nonlinear waves in shear flows. J. Fluid Mech. 779, R1.CrossRefGoogle Scholar
Monokrousos, S., Bottaro, A., Brandt, L., Di Vita, A. & Henningson, D.S. 2011 Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows. Phys. Rev. Lett. 106, 134502.CrossRefGoogle ScholarPubMed
Orszag, S.A. 1971 Accurate solution of the Orr–Sommerfeld equation. J. Fluid Mech. 50, 689703.CrossRefGoogle Scholar
Pringle, C.C.T. & Kerswell, R.R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105, 154502.CrossRefGoogle ScholarPubMed
Pringle, C.C.T., Willis, A.P. & Kerswell, R.R. 2012 Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos. J. Fluid Mech. 702, 415443.CrossRefGoogle Scholar
Rabin, S.M.E., Caulfield, C.P. & Kerswell, R.R. 2012 Triggering turbulence efficiently in plane Couette flow. J. Fluid Mech. 712, 244272.CrossRefGoogle Scholar
Reddy, S.C., Schmid, P.J., Baggett, J.S. & Henningson, D.S. 1998 On stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech. 365, 269303.CrossRefGoogle Scholar
Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. 174, 935982.Google Scholar
Roizner, F., Karp, M. & Cohen, J. 2016 Subcritical transition in plane Poiseuille flow as a linear instability process. Phys. Fluids 28, 054104.CrossRefGoogle Scholar
Schmid, P.J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Sulpizio, J.A., Ella, L., Rozen, A., Birkbeck, J., Perell, D.J., Dutta, D., Ben-Shalom, M., Taniguchi, T., Watanabe, K. & Holder, T. 2019 Visualizing Poiseuille flow of hydrodynamic electrons. Nature 576 (7785), 7579.CrossRefGoogle ScholarPubMed
Taylor, J.R. 2008 Numerical simulations of the stratified oceanic bottom boundary layer. PhD thesis, University of California, San Diego.Google Scholar
Tillmark, N. & Alfredsson, P.H. 1992 Experiments on transition in plane Couette flow. J. Fluid Mech. 235, 89102.CrossRefGoogle Scholar
Trefethen, L.N. & Embree, M. 2005 Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.CrossRefGoogle Scholar
Trefethen, L.N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.CrossRefGoogle ScholarPubMed
Zammert, S. & Eckhardt, B. 2014 Streamwise and doubly-localised periodic orbits in plane Poiseuille flow. J. Fluid Mech. 761, 348359.CrossRefGoogle Scholar
Zammert, S. & Eckhardt, B. 2019 Transition to turbulence when the Tollmien–Schlichting and bypass routes coexist. J. Fluid Mech. 880, R2.CrossRefGoogle Scholar