Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T14:07:14.389Z Has data issue: false hasContentIssue false

Solvo-osmotic flow in electrolytic mixtures

Published online by Cambridge University Press:  18 April 2017

Sela Samin*
Affiliation:
Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
René van Roij
Affiliation:
Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

We show that an electric field parallel to an electrically neutral surface can generate flow of electrolytic mixtures in small channels. We term this solvo-osmotic flow, since the flow is induced by the asymmetric preferential solvation of ions at the liquid–solid interface. The generated flow is comparable in magnitude to the ubiquitous electro-osmotic flow at charged surfaces, but for a fixed surface charge density, it differs qualitatively in its dependence on ionic strength. Solvo-osmotic flow can also be sensitively controlled with temperature. We derive a modified Helmholtz–Smoluchowski equation that accounts for these effects.

Type
Rapids
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araki, T. & Onuki, A. 2009 Dynamics of binary mixtures with ions: dynamic structure factor and mesophase formation. J. Phys.: Condens. Matter 21 (42), 424116.Google ScholarPubMed
Banerjee, A., Williams, I., Azevedo, R. N., Helgeson, M. E. & Squires, T. M. 2016 Soluto-inertial phenomena: designing long-range, long-lasting, surface-specific interactions in suspensions. Proc. Natl Acad. Sci. USA 113 (31), 86128617.CrossRefGoogle ScholarPubMed
Bautista, O., Sánchez, S., Arcos, J. C. & Méndez, F. 2013 Lubrication theory for electro-osmotic flow in a slit microchannel with the Phan-Thien and Tanner model. J. Fluid Mech. 722, 496532.Google Scholar
Ben-Yaakov, D., Andelman, D., Harries, D. & Podgornik, R. 2009 Beyond standard Poisson–Boltzmann theory: ion-specific interactions in aqueous solutions. J. Phys.: Condens. Matter 21 (42), 424106.Google Scholar
Bhattacharyya, S., Zheng, Z. & Conlisk, A. T. 2005 Electro-osmotic flow in two-dimensional charged micro- and nanochannels. J. Fluid Mech. 540, 247267.Google Scholar
Bier, M., Gambassi, A. & Dietrich, S. 2012 Local theory for ions in binary liquid mixtures. J. Chem. Phys. 137 (3), 034504.Google Scholar
Bier, M., Gambassi, A., Oettel, M. & Dietrich, S. 2011 Electrostatic interactions in critical solvents. Europhys. Lett. 95 (6), 60001.CrossRefGoogle Scholar
Bocquet, L. & Charlaix, E. 2010 Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 10731095.Google Scholar
Bonn, D., Otwinowski, J., Sacanna, S., Guo, H., Wegdam, G. & Schall, P. 2009 Direct observation of colloidal aggregation by critical Casimir forces. Phys. Rev. Lett. 103 (15), 156101.CrossRefGoogle ScholarPubMed
Bouzigues, C. I., Tabeling, P. & Bocquet, L. 2008 Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces. Phys. Rev. Lett. 101, 114503.Google Scholar
Delgado, A. V., González-Caballero, F., Hunter, R. J., Koopal, L. K. & Lyklema, J. 2007 Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309 (2), 194224.Google Scholar
Eijkel, J. C. T. & van den Berg, A. 2005 Nanofluidics: what is it and what can we expect from it? Microfluid Nanofluid 1 (3), 249267.CrossRefGoogle Scholar
Elbers, N. A., van der Hoeven, J. E. S., de Winter, D. A. M., Schneijdenberg, C. T. W. M., van der Linden, M. N., Filion, L. & van Blaaderen, A. 2016 Repulsive van der Waals forces enable Pickering emulsions with non-touching colloids. Soft Matt. 12 (35), 72657272.CrossRefGoogle Scholar
Everts, J. C., Samin, S. & van Roij, R. 2016 Tuning colloid–interface interactions by salt partitioning. Phys. Rev. Lett. 117 (9), 098002.CrossRefGoogle ScholarPubMed
Grob, M. & Steiner, F. 2002 Characteristics of the electroosmotic flow of electrolyte systems for nonaqueous capillary electrophoresis. Electrophoresis 23 (12), 1853.Google Scholar
Hertlein, C., Helden, L., Gambassi, A., Dietrich, S. & Bechinger, C. 2008 Direct measurement of critical Casimir forces. Nature 451 (7175), 172175.CrossRefGoogle ScholarPubMed
Huang, D. M., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. 2007 Ion-specific anomalous electrokinetic effects in hydrophobic nanochannels. Phys. Rev. Lett. 98, 177801.Google Scholar
Huang, D. M., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. 2008 Massive amplification of surface-induced transport at superhydrophobic surfaces. Phys. Rev. Lett. 101 (6), 064503.CrossRefGoogle ScholarPubMed
Jing, D. & Bhushan, B. 2013 Quantification of surface charge density and its effect on boundary slip. Langmuir 29 (23), 69536963.CrossRefGoogle ScholarPubMed
Kalidas, C., Hefter, G. & Marcus, Y. 2000 Gibbs energies of transfer of cations from water to mixed aqueous organic solvents. Chem. Rev. 100 (3), 819852.CrossRefGoogle ScholarPubMed
Kawasaki, K. 1970 Kinetic equations and time correlation functions of critical fluctuations. Ann. Phys. 61 (1), 156.CrossRefGoogle Scholar
Keh, H. J. & Tseng, H. C. 2001 Transient electrokinetic flow in fine capillaries. J. Colloid Interface Sci. 242 (2), 450459.Google Scholar
Kenndler, E. 2014 A critical overview of non-aqueous capillary electrophoresis. Part I: mobility and separation selectivity. J. Chromatogr. A 1335, 1630.Google Scholar
Law, B. M., Petit, J.-M. & Beysens, D. 1998 Adsorption-induced reversible colloidal aggregation. Phys. Rev. E 57 (5), 57825794.Google Scholar
Leunissen, M. E., van Blaaderen, A., Hollingsworth, A. D., Sullivan, M. T. & Chaikin, P. M. 2007a Electrostatics at the oil–water interface, stability, and order in emulsions and colloids. Proc. Natl Acad. Sci. USA 104 (8), 25852590.CrossRefGoogle ScholarPubMed
Leunissen, M. E., Zwanikken, J., van Roij, R., Chaikin, P. M. & van Blaaderen, A. 2007b Ion partitioning at the oil–water interface as a source of tunable electrostatic effects in emulsions with colloids. Phys. Chem. Chem. Phys. 9, 64056414.CrossRefGoogle ScholarPubMed
Maduar, S. R., Belyaev, A. V., Lobaskin, V. & Vinogradova, O. I. 2015 Electrohydrodynamics near hydrophobic surfaces. Phys. Rev. Lett. 114 (11), 118301.Google Scholar
Mao, M., Sherwood, J. D. & Ghosal, S. 2014 Electro-osmotic flow through a nanopore. J. Fluid Mech. 749, 167183.Google Scholar
Marcus, Y. 2007 Gibbs energies of transfer of anions from water to mixed aqueous organic solvents. Chem. Rev. 107 (9), 38803897.CrossRefGoogle ScholarPubMed
Michler, D., Shahidzadeh, N., Westbroek, M., van Roij, R. & Bonn, D. 2015 Are antagonistic salts surfactants? Langmuir 31 (3), 906911.Google Scholar
Nellen, U., Dietrich, J., Helden, L., Chodankar, S., Nygård, K., van der Veen, J. F. & Bechinger, C. 2011 Salt-induced changes of colloidal interactions in critical mixtures. Soft Matt. 7, 53605364.CrossRefGoogle Scholar
Okamoto, R. & Onuki, A. 2011 Charged colloids in an aqueous mixture with a salt. Phys. Rev. E 84, 051401.Google Scholar
Onuki, A. & Kitamura, H. 2004 Solvation effects in near-critical binary mixtures. J. Chem. Phys. 121 (7), 31433151.Google Scholar
Onuki, A., Yabunaka, S., Araki, T. & Okamoto, R. 2016 Structure formation due to antagonistic salts. Curr. Opin. Colloid Interface Sci. 22, 5964.CrossRefGoogle Scholar
Pousaneh, F. & Ciach, A. 2011 The origin of the attraction between like charged hydrophobic and hydrophilic walls confining a near-critical binary aqueous mixture with ions. J. Phys.: Condens. Matter 23 (41), 412101.Google Scholar
Pousaneh, F. & Ciach, A. 2014 The effect of antagonistic salt on a confined near-critical mixture. Soft Matt. 10 (41), 81888201.Google Scholar
Rankin, D. J. & Huang, D. M. 2016 The effect of hydrodynamic slip on membrane-based salinity-gradient-driven energy harvesting. Langmuir 32 (14), 34203432.Google Scholar
Samin, S., Hod, M., Melamed, E., Gottlieb, M. & Tsori, Y. 2014 Experimental demonstration of the stabilization of colloids by addition of salt. Phys. Rev. Appl. 2 (2), 024008.Google Scholar
Samin, S. & van Roij, R. 2017 Interplay between adsorption and hydrodynamics in nanochannels: towards tunable membranes. Phys. Rev. Lett. 118 (1), 014502.Google Scholar
Samin, S. & Tsori, Y. 2011 Attraction between like-charge surfaces in polar mixtures. Europhys. Lett. 95 (3), 36002.CrossRefGoogle Scholar
Samin, S. & Tsori, Y. 2012 The interaction between colloids in polar mixtures above t c . J. Chem. Phys. 136 (15), 154908.CrossRefGoogle Scholar
Samin, S. & Tsori, Y. 2013 Stabilization of charged and neutral colloids in salty mixtures. J. Chem. Phys. 139 (24), 244905.Google Scholar
Samin, S. & Tsori, Y. 2016 Reversible pore gating in aqueous mixtures via external potential. Colloid Interface Sci. Commun. 12, 912.Google Scholar
Sazonov, V. P., Shaw, D. G., Skrzecz, A., Lisov, N. I. & Sazonov, N. V. 2007 IUPAC-NIST solubility data series. 83. Acetonitrile: ternary and quaternary systems. J. Phys. Chem. Ref. Data 36 (3), 7331131.Google Scholar
von Smoluchowski, M. 1903 Contribution à la théorie de l’endosmose électrique et de quelques phénomnès corrélatifs. Bull. Intl Acad. Sci. Cracovie 8, 182.Google Scholar
Squires, T. M. & Quake, S. R. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77 (3), 9771026.Google Scholar
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices. Annu. Rev. Fluid Mech. 36 (1), 381411.Google Scholar
Tsori, Y. & Leibler, L. 2007 Phase-separation in ion-containing mixtures in electric fields. Proc. Natl Acad. Sci. USA 104 (18), 73487350.CrossRefGoogle ScholarPubMed
Valkó, I. E., Sirén, H. & Riekkola, M.-L. 1999 Characteristics of electroosmotic flow in capillary electrophoresis in water and in organic solvents without added ionic species. J. Microcolumn. Separations 11 (3), 199208.Google Scholar
Wohlfarth, C. 2009 Viscosity of pure organic liquids and binary liquid mixtures. In Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, vol. IV/25. Springer.Google Scholar
Zwanikken, J. & van Roij, R. 2007 Charged colloidal particles and small mobile ions near the oil–water interface: destruction of colloidal double layer and ionic charge separation. Phys. Rev. Lett. 99, 178301.Google Scholar