Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T14:58:57.670Z Has data issue: false hasContentIssue false

Similarity scaling and vorticity structure in high-Reynolds-number stably stratified turbulent wakes

Published online by Cambridge University Press:  07 March 2011

PETER J. DIAMESSIS*
Affiliation:
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
GEOFFREY R. SPEDDING
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1191, USA
J. ANDRZEJ DOMARADZKI
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1191, USA
*
Email address for correspondence: [email protected]

Abstract

The mean velocity profile scaling and the vorticity structure of a stably stratified, initially turbulent wake of a towed sphere are studied numerically using a high-accuracy spectral multi-domain penalty method model. A detailed initialization procedure allows a smooth, minimum-transient transition into the non-equilibrium (NEQ) regime of wake evolution. A broad range of Reynolds numbers, Re = UD/ν ∈ [5 × 103, 105] and internal Froude numbers, Fr = 2U/(ND) ∈ [4, 64] (U, D are characteristic velocity and length scales, and N is the buoyancy frequency) is examined. The maximum value of Re and the range of Fr values considered allow extrapolation of the results to geophysical and naval applications.

At higher Re, the NEQ regime, where three-dimensional turbulence adjusts towards a quasi-two-dimensional, buoyancy-dominated flow, lasts significantly longer than at lower Re. At Re = 5 × 103, vertical fluid motions are rapidly suppressed, but at Re = 105, secondary Kelvin–Helmholtz instabilities and ensuing turbulence are clearly observed up to Nt ≈ 100. The secondary motions intensify with increasing stratification strength and have significant vertical kinetic energy.

These results agree with existing scaling of buoyancy-driven shear on Re/Fr2 and suggest that, in the field, the NEQ regime may last up to Nt ≈ 1000. At a given high Re value, during the NEQ regime, the scale separation between Ozmidov and Kolmogorov scale is independent of Fr. This first systematic numerical investigation of stratified turbulence (as defined by Lilly, J. Atmos. Sci. vol. 40, 1983, p. 749), in a controlled localized flow with turbulent initial conditions suggests that a reconsideration of the commonly perceived life cycle of a stratified turbulent event may be in order for the correct turbulence parametrizations of such flows in both geophysical and operational contexts.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdilghanie, A. M. & Diamessis, P. J. 2011 On the generation and evolution of numerically simulated large amplitude internal gravity wave packets. Theor. Comput. Fluid Dyn. (in press).CrossRefGoogle Scholar
Bevilaqua, P. M. & Lykoudis, P. S. 1978 Turbulence memory in self-preserving wakes. J. Fluid Mech. 89, 589606.CrossRefGoogle Scholar
Billant, P. & Chomaz, J. M. 2000 a Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid. J. Fluid Mech. 418, 167188.CrossRefGoogle Scholar
Billant, P. & Chomaz, J. M. 2000 b Theoretical analysis of the zigzag instability of a vertical columnar vortex pair in a strongly stratified fluid. J. Fluid Mech. 419, 2963.CrossRefGoogle Scholar
Billant, P. & Chomaz, J. M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13 (6), 16451651.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2006 Computation of a high-Reynolds-number jet and its radiated noise using large eddy simulation based on explicit filtering. Comput. Fluids 35 (10), 13441358.CrossRefGoogle Scholar
Bonneton, P., Chomaz, J. M. & Hopfinger, E. J. 1993 Internal waves produced by the turbulent wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech. 254, 2340.CrossRefGoogle Scholar
Bonnier, M. & Eiff, O. 2002 Experimental investigation of the collapse of a turbulent wake in a stratified fluid. Phys. Fluids 14 (2), 791801.CrossRefGoogle Scholar
Boris, J. P., Grinstein, F. F., Oran, E. S. & Kolbe, R. L. 1992 New insights into large eddy simulation. Fluid Dyn. Res. 10, 199228.CrossRefGoogle Scholar
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods. Dover.Google Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J. M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.CrossRefGoogle Scholar
Browand, F. K., Guyomar, D. & Yoon, S. C. 1987 The behaviour of a turbulent front in a stratified fluid: experiments with an oscillating grid. J. Geophys. Res. 92, 53295341.Google Scholar
Browand, F. K. & Latigo, B. O. 1979 Growth of the two-dimensional mixing layer from a turbulent and non-turbulent boundary layer. Phys. Fluids 22 (6), 10111019.CrossRefGoogle Scholar
Brucker, K. A. & Sarkar, S. 2010 A study of momentumless wakes in stratified fluids. J. Fluid Mech. 652, 373404.CrossRefGoogle Scholar
Chomaz, J. M., Bonetton, P., Butet, A. & Hopfinger, E. J. 1993 a Vertical diffusion of the far wake of a sphere moving in a stratified fluid. Phys. Fluids 5 (11), 27992806.CrossRefGoogle Scholar
Chomaz, J. M., Bonetton, P., Butet, A. & Perrier, M. 1992 Froude number dependence of the flow separation line on a sphere towed in a stratified fluid. Phys. Fluids 4 (2), 254258.CrossRefGoogle Scholar
Chomaz, J. M., Bonetton, P. & Hopfinger, E. J. 1993 b The structure of the near wake of a sphere moving in a stratified fluid. J. Fluid Mech. 254, 121.CrossRefGoogle Scholar
Cook, A. W. & Cabot, W. H. 2005 Hyperviscosity for shock-turbulence interactions. J. Comput. Phys. 203, 379385.CrossRefGoogle Scholar
Cousin, L. & Pasquetti, R. 2004 High-order methods for the simulation of transitional to turbulent wakes. In Advances in Scientific Computing and Applications (ed. Tang, T., Lu, Y. & Sun, W.), pp. 133143. Sciences Press.Google Scholar
Deloncle, A., Billant, P. & Chomaz, J. M. 2008 Nonlinear evolution of the zigzag instability in stratified fluids: a shortcut on the route to dissipation. J. Fluid Mech. 599, 229239.CrossRefGoogle Scholar
Diamessis, P. J. 2010 Vertical transport in high-Reynolds-numbers stratified turbulent wakes. In Sixth International Symposium on Environmental Hydraulics. Athens, Greece.Google Scholar
Diamessis, P. J., Domaradzki, J. A. & Hesthaven, J. S. 2005 A spectral multidomain penalty method model for the simulation of high-Reynolds-number localized stratified turbulence. J. Comput. Phys. 202, 298322.CrossRefGoogle Scholar
Diamessis, P. J., Lin, Y. C. & Domaradzki, J. A. 2008 Effective numerical viscosity in spectral multidomain penalty method-based simulations of localized turbulence. J. Comput. Phys. 227, 81458164.CrossRefGoogle Scholar
Diamessis, P. J. & Nomura, K. K. 2000 Interaction of vorticity, rate-of-strain and scalar gradient in stratified homogeneous sheared turbulence. Phys. Fluids 12, 11661688.CrossRefGoogle Scholar
Diamessis, P. J. & Nomura, K. K. 2004 The structure and dynamics of overturns in stably stratified homogeneous turbulence. J. Fluid Mech. 499, 197229.CrossRefGoogle Scholar
Diamessis, P. J. & Spedding, G. R. 2006 Scaling and structure of stratified turbulent wakes at high Reynolds numbers. In Sixth International Symposium on Stratified Flows, pp. 183188. Perth, Australia.Google Scholar
Domaradzki, J. A., Loh, K. C. & Yee, P. P. 2002 Large eddy simulations using the subgrid-scale estimation model and truncated Navier–Stokes dynamics. Theor. Comput. Fluid Dyn. 15, 421450.CrossRefGoogle Scholar
Dommermuth, D. G., Rottman, J. W., Innis, G. E. & Novikov, E. A. 2002 Numerical simulation of the wake of a towed sphere in a weakly stratified fluid. J. Fluid Mech. 473, 83101.CrossRefGoogle Scholar
Fincham, A., Maxworthy, T. & Spedding, G. 1996 Energy dissipation and vortex structure in freely decaying, stratified grid turbulence. Dyn. Atmos. Oceans 23, 155169.CrossRefGoogle Scholar
Gerz, T. & Yamazaki, H. 1993 Direct numerical simulation of buoyancy-driven turbulence in stably stratified fluid. J. Fluid Mech. 249, 415440.CrossRefGoogle Scholar
Gibson, C. H. 1980 Fossil temperature, salinity and vorticity in the ocean. In Marine Turbulence (ed. Nihoul, J. C. T.), pp. 221258. Elsevier.Google Scholar
Gibson, C. H., Nabatov, V. & Ozmidov, R. 1993 Measurements of turbulence and fossil turbulence near Ampere Seamount. Dyn. Atmos. Oceans 19, 175204.CrossRefGoogle Scholar
Godoy-Diana, R., Chomaz, J. M. & Billant, P. 2004 Vertical length scale selection for pancake vortices in strongly stratified viscous fluids. J. Fluid Mech. 504, 229238.CrossRefGoogle Scholar
Gottlieb, D. & Hesthaven, J. S. 2001 Spectral methods for hyperbolic problems. J. Comput. Appl. Maths 128, 83131.CrossRefGoogle Scholar
Gourlay, M. J., Arendt, S. C., Fritts, D. C. & Werne, J. 2001 Numerical modeling of initially turbulent wakes with net momentum. Phys. Fluids 13, 37833802.CrossRefGoogle Scholar
Grinstein, F. F. & Fureby, C. 2002 Recent progress on MILES for high-Reynolds-number flows. Trans. ASME: J. Fluids Engng 124, 848861.Google Scholar
Grinstein, F. F., Margolin, L. G. & Rider, W. J. 2007 Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Hanazaki, H. 1988 A numerical study of three-dimensional stratified flow past a sphere. J. Fluid Mech. 192, 393419.CrossRefGoogle Scholar
Harten, A., Engquist, B., Osher, S. & Chakravarthy, S. R. 1987 Uniformly high-order accurate essentially non-oscillatory schemes. Part III. J. Comput. Phys. 71, 231303.CrossRefGoogle Scholar
Hebert, D. A. & de Bruyn Kops, S. M. 2006 Predicting turbulence in flows with strong stable stratification. Phys. Fluids 18, 066602.CrossRefGoogle Scholar
Hesthaven, J. S. 1997 A stable penalty method for the compressible Navier–Stokes equations: II. One-dimensional domain decomposition schemes. SIAM J. Sci. Comput. 18 (3), 658685.CrossRefGoogle Scholar
Hesthaven, J. S. & Gottlieb, D. 1996 A stable penalty method for the compressible Navier–Stokes equations: I. Open boundary conditions. SIAM J. Sci. Comput. 17 (3), 579612.CrossRefGoogle Scholar
Itsweire, E. C., Koseff, J. R., Briggs, D. A. & Ferziger, J. H. 1993 Turbulence in stratified shear flows: implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr. 23, 15081522.2.0.CO;2>CrossRefGoogle Scholar
Itsweire, E. C., Osborn, T. & Stanton, T. 1989 Horizontal distribution and characteristics of shear layers in the seasonal thermocline. J. Phys. Oceanogr. 19, 301320.2.0.CO;2>CrossRefGoogle Scholar
Ivey, G. N. & Imberger, J. 1991 On the nature of turbulence in a stratified fluid. Part I. The energetics of mixing. J. Phys. Oceanogr. 21, 650658.2.0.CO;2>CrossRefGoogle Scholar
Jacobitz, F. G., Sarkar, S. & Van Atta, C. W. 1997 Direct numerical simulations of the turbulence evolution in a uniformly sheared and stably stratified flow. J. Fluid Mech. 342, 231261.CrossRefGoogle Scholar
Karamanos, G.-S. & Karniadakis, G. E. 2000 A spectral vanishing viscosity method for large-eddy simulations. J. Comput. Phys. 163, 2250.CrossRefGoogle Scholar
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414443.CrossRefGoogle Scholar
Laval, J. P., McWilliams, J. C. & Dubrulle, B. 2003 Forced stratified turbulence: successive transitions with Reynolds number. Phys. Rev. E 68 (C2), 036308.CrossRefGoogle ScholarPubMed
Lilly, D. K. 1983 Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci. 40, 749761.2.0.CO;2>CrossRefGoogle Scholar
Lin, J. T. & Pao, Y. H. 1979 Wakes in stratified fluids. Annu. Rev. Fluid Mech. 11, 317338.CrossRefGoogle Scholar
Lin, Q., Lindberg, W. R., Boyer, D. L. & Fernando, H. J. S. 1992 Stratified flow past a sphere. J. Fluid Mech. 240, 315354.CrossRefGoogle Scholar
Linborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.CrossRefGoogle Scholar
Majda, A. & Grote, M. J. 1997 Model dynamics and vertical collapse in decaying strongly stratified flows. Phys. Fluids 9, 29322940.CrossRefGoogle Scholar
Meunier, P., Diamessis, P. J. & Spedding, G. R. 2006 Self-preservation of stratified momentum wakes. Phys. Fluids 18, 106601.CrossRefGoogle Scholar
Meunier, P. & Spedding, G. R. 2004 A loss of memory in stratified momentum wakes. Phys. Fluids 16, 298303.CrossRefGoogle Scholar
Minguez, M., Pasquetti, R. & Serre, E. 2009 Spectral vanishing viscosity stabilized LES of the Ahmed body turbulent wake. Commun. Comput. Phys. 5, 635648.Google Scholar
Monkewitz, P. A. 1988 A note on vortex shedding from axisymmetric bluff bodies. J. Fluid Mech. 192, 561575.CrossRefGoogle Scholar
Orszag, S. A. & Pao, Y. H. 1975 Numerical computation of turbulent shear flows. Adv. Geophys. 18 (1), 225236.CrossRefGoogle Scholar
Ozgokmen, T. M., Iliescu, T. & Fischer, P. F. 2009 Large eddy simulation of stratified mixing in a three-dimensional lock-exchange system. Ocean Model. 26, 134155.CrossRefGoogle Scholar
Pawlak, G., MacCready, P., Edwards, K. A. & McCabe, R. 2003 Observations on the evolution of tidal vorticity at a stratified deep water headland. Geophys. Res. Lett. 30 (24), 2234.CrossRefGoogle Scholar
Praud, O. & Fincham, A. M. 2005 The structure and dynamics of stratified dipolar vortices. J. Fluid Mech. 544, 122.CrossRefGoogle Scholar
Praud, O., Fincham, A. M. & Sommeria, J. 2005 Decaying grid turbulence in a strongly stratified fluid. J. Fluid Mech. 522, 133.CrossRefGoogle Scholar
Riley, J. J. & de Bruyn Kops, S. M. 2003 Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15, 20472059.CrossRefGoogle Scholar
Riley, J. J. & Lelong, M. P. 2000 Fluid motion in the presence of strong stratification. Annu. Rev. Fluid Mech. 32, 613657.CrossRefGoogle Scholar
Riley, J. J. & Lindborg, E. 2008 Stratified turbulence: a possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci. 65 (7), 24162424.CrossRefGoogle Scholar
Rotunno, R., Grubisic, V. & Smolarkiewicz, P. K. 1999 Vorticity and potential vorticity in mountain wakes. J. Atmos. Sci. 56 (16), 27962810.2.0.CO;2>CrossRefGoogle Scholar
Sagaut, P. 2002 Large Eddy Simulation for Incompressible Flows: An Introduction. Springer.CrossRefGoogle Scholar
Sengupta, K., Jacobs, G. B. & Mashayek, F. 2009 Large-eddy simulation of compressible flows using a spectral-multidomain method. Intl J. Numer. Meth. Fluids 61 (3), 311340.CrossRefGoogle Scholar
Spedding, G. R. 1997 The evolution of initially turbulent bluff-body wakes at high internal Froude number. J. Fluid Mech. 337, 283301.CrossRefGoogle Scholar
Spedding, G. R. 2001 Anisotropy in turbulence profiles of stratified wakes. Phys. Fluids 13 (8), 23612372.CrossRefGoogle Scholar
Spedding, G. R. 2002 Vertical structure in stratified wakes with high initial Froude number. J. Fluid Mech. 454, 71112.CrossRefGoogle Scholar
Spedding, G. R., Browand, F. K. & Fincham, A. M. 1996 a The long-time evolution of the initially turbulent wake of a sphere in a stable stratification. Dyn. Atmos. Oceans 23, 171182.CrossRefGoogle Scholar
Spedding, G. R., Browand, F. K. & Fincham, A. M. 1996 b Turbulence, similarity scaling and vortex geometry in the wake of a towed sphere in a stably stratified fluid. J. Fluid Mech. 314, 53103.CrossRefGoogle Scholar
Sweby, P. K. 1984 High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Thorpe, S. A. 2005 The Turbulent Ocean. Cambridge University Press.CrossRefGoogle Scholar
Tomczak, M. 1988 Island wakes in deep and shallow water. J. Geophys. Res. 93 (C5), 51535154.CrossRefGoogle Scholar
Uberoi, M. S. & Freymuth, P. 1970 Turbulent energy balance and spectra of the axisymmetric wake. Phys. Fluids 13 (9), 22052210.CrossRefGoogle Scholar
Waite, M. L. & Bartello, P. 2003 Stratified turbulence dominated by vortical motion. J. Fluid Mech. 517, 281308.CrossRefGoogle Scholar
Winters, K. B., McKinnon, J. & Mills, B. 2004 A spectral model for process studies of density stratified flows. J. Atmos. Ocean. Technol. 21 (1), 6994.2.0.CO;2>CrossRefGoogle Scholar
Zalesak, S. T. 1979 Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31, 335362.CrossRefGoogle Scholar