Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T23:56:55.509Z Has data issue: false hasContentIssue false

Pairwise hydrodynamic interactions of spherical colloids at a gas-liquid interface

Published online by Cambridge University Press:  25 March 2021

Subhabrata Das
Affiliation:
Langmuir Center for Colloids and Interfaces, Columbia University, New York, NY10027, USA
Joel Koplik
Affiliation:
Department of Physics, City College of City University of New York, New York, NY10031, USA
Ponisseril Somasundaran
Affiliation:
Langmuir Center for Colloids and Interfaces, Columbia University, New York, NY10027, USA
Charles Maldarelli*
Affiliation:
Department of Chemical Engineering, City College of City University of New York, New York, NY10031, USA
*
Email address for correspondence: [email protected]

Abstract

Colloids which adsorb to and straddle a fluid interface form monolayers that are paradigms of particle dynamics on a two dimensional fluid landscape. The dynamics is typically inertialess (Stokes flows) and dominated by interfacial tension so the interface is undeformed by the flow, and pairwise drag coefficients can be calculated. Here the hydrodynamic interaction between identical spherical colloids on a planar gas/liquid interface is calculated as a function of separation distance and immersion depth. Drag coefficients (normalized by the coefficient for an isolated particle on the surface) are computed numerically for the four canonical interactions. The first two are motions along the line of centres, either with the particles mutually approaching each other or moving in the same direction (in tandem). The second two are motions perpendicular to the line of centres, either oppositely directed (shear) or in the same direction (tandem). For mutual approach and shear, the normalized coefficients increase with a decrease in separation due to lubrication forces, and become infinite on contact when the particle is more than half immersed. However, they remain bounded at contact when the particles are less than half immersed because they do not contact underneath the liquid. For in-tandem motion, the normalized coefficients decrease with a decrease in separation; they collapse, for all immersion depths, to the dependence of the drag coefficient on separation for two particles moving in tandem in an infinite medium. The coefficients are used to compute separation against time for colloids driven together by capillary attraction.

JFM classification

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ballard, N., Law, A.D. & Bon, S.A.F. 2019 Colloidal particles at fluid interfaces: behaviour of isolated particles. Soft Matt. 15 (6), 11861199.CrossRefGoogle ScholarPubMed
Barman, S. & Christopher, G.F. 2016 Role of capillarity and microstructure on interfacial viscoelasticity of particle laden interfaces. J. Rheol. 60 (1), 3545.CrossRefGoogle Scholar
Binks, B.P. & Horozov, T. (Ed.) 2006 Colloid particles at liquid interfaces. In Colloidal Particles at Liquid Interfaces. Cambridge University Press.CrossRefGoogle Scholar
Binks, B.P. 2002 Solid-stabilised emulsions and foams. Curr. Opin. Colloid Interface Sci. 7 (1–2), 2141.CrossRefGoogle Scholar
Bleibel, J., Domínguez, A., Günther, F., Harting, J. & Oettel, M. 2014 Hydrodynamic interactions induce anomalous diffusion under partial confinement. Soft Matt. 10 (17), 29452948.CrossRefGoogle ScholarPubMed
Boneva, M.P., Christov, N.C., Danov, K.D. & Kralchevsky, P.A. 2007 Effect of electric-field-induced capillary attraction on the motion of particles at an oil–water interface. Phys. Chem. Chem. Phys. 9 (48), 63716384.CrossRefGoogle ScholarPubMed
Boneva, M.P., Danov, K.D., Christov, N.C. & Kralchevsky, P.A. 2009 Attraction between particles at a liquid interface due to the interplay of gravity-and electric-field-induced interfacial deformations. Langmuir 25 (16), 91299139.CrossRefGoogle Scholar
Booth, S.G. & Dryfe, R.A.W. 2015 Assembly of nanoscale objects at the liquid/liquid interface. J. Phys. Chem. C 119 (41), 2329523309.CrossRefGoogle Scholar
Bresme, F. & Oettel, M. 2007 Nanoparticles at fluid interfaces. J. Phys.: Condens. Matter 19, 413101.Google ScholarPubMed
Dalbe, M.-J., Cosic, D., Berhanu, M. & Kudrolli, A. 2011 Aggregation of frictional particles due to capillary attraction. Phys. Rev. E 83 (5), 051403.CrossRefGoogle ScholarPubMed
Dani, A., Keiser, G., Yeganeh, M. & Maldarelli, C. 2015 Hydrodynamics of particles at an oil-water interface. Langmuir 31 (49), 1329013302.CrossRefGoogle ScholarPubMed
Danov, K.D., Aust, R., Durst, F. & Lange, U. 1995 Influence of the surface viscosity on the drag and torque coefficients of a solid particle in a thin liquid layer. Chem. Engng Sci. 50, 263277.CrossRefGoogle Scholar
Danov, K.D., Dimova, R. & Pouligny, B. 2000 Viscous drag of a solid sphere straddling a spherical or flat surface. Phys. Fluids 12, 27112722.CrossRefGoogle Scholar
Danov, K.D. & Kralchevsky, P.A. 2006 Electric forces induced by a charged colloid particle attached to the water–nonpolar fluid interface. J. Colloid Interface Sci. 298 (1), 213231.CrossRefGoogle ScholarPubMed
Danov, K.D. & Kralchevsky, P.A. 2010 Capillary forces between particles at a liquid interface: general theoretical approach and interactions between capillary multipoles. Adv. Colloid Interface Sci. 154 (1–2), 91103.CrossRefGoogle Scholar
Darras, A., Mignolet, F., Vandewalle, N. & Lumay, G. 2018 Remote-controlled deposit of superparamagnetic colloidal droplets. Phys. Rev. E 98 (6), 062608.CrossRefGoogle Scholar
De Corato, M. & Garbin, V. 2018 Capillary interactions between dynamically forced particles adsorbed at a planar interface and on a bubble. J. Fluid Mech. 847, 7192.CrossRefGoogle Scholar
Deshmukh, O.S., van den Ende, D., Stuart, M.C., Mugele, F. & Duits, M.H.G. 2015 Hard and soft colloids at fluid interfaces: adsorption, interactions, assembly & rheology. Adv. Colloid Interface Sci. 222, 215227.CrossRefGoogle ScholarPubMed
Dörr, A. & Hardt, S. 2015 Driven particles at fluid interfaces acting as capillary dipoles. J. Fluid Mech. 770, 526.CrossRefGoogle Scholar
Dörr, A., Hardt, S., Masoud, H. & Stone, H.A. 2016 Drag and diffusion coefficients of a spherical particle attached to a fluid–fluid interface. J. Fluid Mech. 790, 607618.CrossRefGoogle Scholar
Du, D., Hilou, E. & Biswal, S.L. 2018 Reconfigurable paramagnetic microswimmers: Brownian motion affects non-reciprocal actuation. Soft Matt. 14 (18), 34633470.CrossRefGoogle ScholarPubMed
Fei, W., Gu, Y. & Bishop, K. 2017 Active colloidal particles at fluid-fluid interfaces. Curr. Opin. Colloid Interface Sci. 32, 5768.CrossRefGoogle Scholar
Fischer, T..M., Dhar, P. & Heinig, P. 2006 The viscous drag of spheres and filaments moving in membranes or monolayers. J. Fluid Mech. 558, 451475.CrossRefGoogle Scholar
Fujita, M., Nishikawa, H., Okubo, T. & Yamaguchi, Y. 2004 Multiscale simulation of two-dimensional self-organization of nanoparticles in liquid film. Japan J. Appl. Phys. 43 (7R), 4434.CrossRefGoogle Scholar
Garbin, V., Crocker, J. & Stebe, K. 2012 a Nanoparticles at fluid interfaces: exploiting capping ligands to control adsorption, stability and dynamics. J. Colloid Interface Sci. 387, 111.CrossRefGoogle ScholarPubMed
Garbin, V., Crocker, J.C. & Stebe, K.J. 2012 b Forced desorption of nanoparticles from an oil–water interface. Langmuir 28 (3), 16631667.CrossRefGoogle ScholarPubMed
Herzig, E.M., White, K.A., Schofield, A.B., Poon, W.C.K. & Clegg, P.S. 2007 Bicontinuous emulsions stabilized solely by colloidal particles. Nat. Mater. 6 (12), 966971.CrossRefGoogle ScholarPubMed
Hilou, E., Du, D., Kuei, S. & Biswal, S.L. 2018 Interfacial energetics of two-dimensional colloidal clusters generated with a tunable anharmonic interaction potential. Phys. Rev. Mater. 2 (2), 025602.CrossRefGoogle Scholar
Huang, Z., Su, M., Yang, Q., Li, Z., Chen, S., Li, Y., Zhou, X., Li, F. & Song, Y. 2017 A general patterning approach by manipulating the evolution of two-dimensional liquid foams. Nat. Commun. 8 (1), 19.Google ScholarPubMed
Huerre, A., De Corato, M. & Garbin, V. 2018 Dynamic capillary assembly of colloids at interfaces with 10 000 g accelerations. Nat. Commun. 9 (1), 3620.CrossRefGoogle Scholar
Jeffrey, D.J. & Onishi, Y. 1984 Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261290.CrossRefGoogle Scholar
Kollmann, M., Hund, R., Rinn, B., Nägele, G., Zahn, K., König, H., Maret, G., Klein, R. & Dhont, J.K.G. 2002 Structure and tracer-diffusion in quasi–two-dimensional and strongly asymmetric magnetic colloidal mixtures. Europhys. Lett. 58 (6), 919925.CrossRefGoogle Scholar
Kralchevsky, P.A., Denkov, N.D. & Danov, K.D. 2001 Particles with an undulated contact line at a fluid interface: interaction between capillary quadrupoles and rheology of particulate monolayers. Langmuir 17 (24), 76947705.CrossRefGoogle Scholar
Kralchevsky, P.A. & Nagayama, K. 2000 Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv. Colloid Interface Sci. 85, 145192.CrossRefGoogle ScholarPubMed
Laal-Dehghani, N. & Christopher, G.F. 2019 2D Stokesian simulation of particle aggregation at quiescent air/oil-water interfaces. J. Colloid Interface Sci. 553, 259268.CrossRefGoogle ScholarPubMed
Laal Dehghani, N., Khare, R. & Christopher, G.F. 2017 2D Stokesian approach to modeling flow induced deformation of particle laden interfaces. Langmuir 34 (3), 904916.CrossRefGoogle ScholarPubMed
Loudet, J.C., Alsayed, A.M., Zhang, J. & Yodh, A.G. 2005 Capillary interactions between anisotropic colloidal particles. Phys. Rev. Lett. 94, 018301.CrossRefGoogle ScholarPubMed
Löwen, H., Messina, R., Hoffmann, N., Likos, C.N., Eisenmann, C., Keim, P., Gasser, U., Maret, G., Goldberg, R. & Palberg, T. 2005 Colloidal layers in magnetic fields and under shear flow. J. Phys.: Condens. Matter 17 (45), S3379.Google Scholar
Lumay, G., Obara, N., Weyer, F. & Vandewalle, N. 2013 Self-assembled magnetocapillary swimmers. Soft Matt. 9 (8), 24202425.CrossRefGoogle Scholar
Maestro, A., Santini, E. & Guzmán, E. 2018 Physico-chemical foundations of particle-laden fluid interfaces. Eur. Phys. J. E 41 (8), 97.CrossRefGoogle ScholarPubMed
Millett, P.C. & Wang, Y.U. 2011 Diffuse-interface field approach to modeling arbitrarily-shaped particles at fluid–fluid interfaces. J. Colloid Interface Sci. 353 (1), 4651.CrossRefGoogle ScholarPubMed
Nishikawa, H., Fujita, M., Maenosono, S., Yamaguchi, Y. & Okudo, T. 2006 Effects of frictional force on the formation of colloidal particle monolayer during drying–study using discrete element method–[translated]. KONA Powder Part. J. 24, 192202.CrossRefGoogle Scholar
Nishikawa, H., Maenosono, S., Yamaguchi, Y. & Okubo, T. 2003 Self-assembling process of colloidal particles into two-dimensional arrays induced by capillary immersion force: a simulation study with discrete element method. J. Nanopart. Res. 5 (1–2), 103110.CrossRefGoogle Scholar
Oettel, M. & Dietrich, S. 2008 Colloidal interactions at fluid interfaces. Langmuir 24, 14251441.CrossRefGoogle ScholarPubMed
O'Neill, M.E., Ranger, K.B. & Brenner, H. 1985 Slip at the surface of a translating-rotating sphere bisected by a free surface bounding a semi infinite viscous fluid: removal of the contact line singularity. Phys. Fluids 29, 913924.CrossRefGoogle Scholar
Park, B.J. & Lee, D. 2014 Particles at fluid-fluid interfaces: from single-particle behavior to hierarchical assembly of materials. MRS Bull. 39 (12), 10891098.CrossRefGoogle Scholar
Pesché, R. & Nägele, G. 2000 a Dynamical properties of wall-confined colloids. Europhys. Lett. 51 (5), 584.CrossRefGoogle Scholar
Pesché, R. & Nägele, G. 2000 b Stokesian dynamics study of quasi-two-dimensional suspensions confined between two parallel walls. Phys. Rev. E 62 (4), 5432.CrossRefGoogle ScholarPubMed
Poulichet, V. & Garbin, V. 2015 Ultrafast desorption of colloidal particles from fluid interfaces. Proc. Natl Acad. Sci. USA 112 (19), 59325937.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 2007 Particle motion near and inside an interface. J. Fluid Mech. 575, 333357.CrossRefGoogle Scholar
Rahman, S.E., Laal-Dehghani, N., Barman, S. & Christopher, G.F. 2019 a Modifying interfacial interparticle forces to alter microstructure and viscoelasticity of densely packed particle laden interfaces. J. Colloid Interface Sci. 536, 3041.CrossRefGoogle ScholarPubMed
Rahman, S.E., Laal-Dehghani, N. & Christopher, G.F. 2019 b Interfacial viscoelasticity of self-assembled hydrophobic/hydrophilic particles at an air/water interface. Langmuir 35 (40), 1311613125.CrossRefGoogle ScholarPubMed
Razavi, S., Cao, K.D., Lin, B., Lee, K.Y.C., Tu, R.S. & Kretzschmar, I. 2015 Collapse of particle-laden interfaces under compression: buckling vs particle expulsion. Langmuir 31 (28), 77647775.CrossRefGoogle ScholarPubMed
Rinn, B., Zahn, K., Maass, P. & Maret, G. 1999 Influence of hydrodynamic interactions on the dynamics of long-range interacting colloidal particles. Europhys. Lett. 46 (4), 537.CrossRefGoogle Scholar
Stamou, D., Duschl, C. & Johannsmann, D. 2000 Long-range attraction between colloidal spheres at the air-water interface: the consequence of an irregular meniscus. Phys. Rev. E 62 (4), 5263.CrossRefGoogle ScholarPubMed
Uzi, A., Ostrovski, Y. & Levy, A. 2016 Modeling and simulation of particles in gas–liquid interface. Adv. Powder Technol. 27 (1), 112123.CrossRefGoogle Scholar
Vandewalle, N., Clermont, L., Terwagne, D., Dorbolo, S., Mersch, E. & Lumay, G. 2012 Symmetry breaking in a few-body system with magnetocapillary interactions. Phys. Rev. E 85, 041402.CrossRefGoogle Scholar
Vandewalle, N., Obara, N. & Lumay, G. 2013 Mesoscale structures from magnetocapillary self-assembly. Eur. Phys. J. E 36 (10), 127.CrossRefGoogle ScholarPubMed
Vassileva, N.D., van den Ende, D., Mugele, F. & Mellema, J. 2005 Capillary forces between spherical particles floating at a liquid-liquid interface. Langmuir 21 (24), 1119011200.CrossRefGoogle Scholar
Vidal, A. & Botto, L. 2017 Slip flow past a gas–liquid interface with embedded solid particles. J. Fluid Mech. 813, 152174.CrossRefGoogle Scholar
Vignati, E., Piazza, R. & Lockhart, T.P. 2003 Pickering emulsions: interfacial tension, colloidal layer morphology, and trapped-particle motion. Langmuir 19 (17), 66506656.CrossRefGoogle Scholar
Wu, J. & Ma, G.-H. 2016 Recent studies of pickering emulsions: particles make the difference. Small 12 (34), 46334648.CrossRefGoogle ScholarPubMed
Xie, Q., Davies, G.B. & Harting, J. 2016 Controlled capillary assembly of magnetic janus particles at fluid–fluid interfaces. Soft Matt. 12 (31), 65666574.CrossRefGoogle ScholarPubMed
Xie, Q., Davies, G.B. & Harting, J. 2017 Direct assembly of magnetic janus particles at a droplet interface. ACS Nano 11 (11), 1123211239.CrossRefGoogle Scholar
Yariv, E. 2017 Boundary-induced autophoresis of isotropic colloids: anomalous repulsion in the lubrication limit. J. Fluid Mech. 812, 2640.CrossRefGoogle Scholar
Zahn, K. & Maret, G. 1999 Two-dimensional colloidal structures responsive to external fields. Curr. Opin. Colloid Interface Sci. 4 (1), 6065.CrossRefGoogle Scholar
Zahn, K., Méndez-Alcaraz, J.M. & Maret, G. 1997 Hydrodynamic interactions may enhance the self-diffusion of colloidal particles. Phys. Rev. Lett. 79 (1), 175.CrossRefGoogle Scholar
Supplementary material: File

Das et al. supplementary material

Das et al. supplementary material

Download Das et al. supplementary material(File)
File 36.6 KB