Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-01T01:01:37.529Z Has data issue: false hasContentIssue false

The orientational dynamics of deformable finite-sized bubbles in turbulence

Published online by Cambridge University Press:  19 March 2021

Ashik Ullah Mohammad Masuk
Affiliation:
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD21218, USA
Ashwanth K.R. Salibindla
Affiliation:
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD21218, USA
Rui Ni*
Affiliation:
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD21218, USA
*
Email address for correspondence: [email protected]

Abstract

We present simultaneous three-dimensional measurements of deformable finite-sized bubbles and surrounding turbulent flows. The orientations of bubbles are linked to two key mechanisms that drive bubble deformation: the turbulent strain rate and slip velocity between the two phases. The strongest preferential alignment is between the bubbles and slip velocity, indicating the latter plays a dominant role. We also compared our experimental results with the deformation of ideal material elements with no slip velocity or surface tension. Without these, material elements show highly different orientations, further confirming the importance of the slip velocity in the bubble orientation. In addition to deformation, when bubbles begin to break, their relative orientations change significantly. Although the alignment of the severely deformed bubbles with the eigenvectors of the turbulent strain rate becomes much stronger, the bubble semi-major axis becomes aligned with (rather than perpendicular to) the slip velocity through an almost $90^{\circ }$ turn. This puzzling orientation change occurs because the slip velocity contains the contributions from both the bubble and the background flow. As the bubble experiences strong deformation, the rapid elongation of its semi-major axis leads to a large bubble velocity, which dominates the slip velocity and forces its alignment with the bubble's semi-major axis. The slip velocity thereby switches from a driving mechanism to a driven result as bubbles approach breakup. The results highlight the complex coupling between the bubble orientation and the surrounding flow, which should be included when modelling the bubble deformation and breakup in turbulence.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armandoost, P., Bayareh, M. & Nadooshan, A.A. 2018 Study of the motion of a spheroidal drop in a linear shear flow. J. Mech. Sci. Technol. 32 (5), 20592067.CrossRefGoogle Scholar
Ashurst, W.T, Kerstein, A.R., Kerr, R.M. & Gibson, C.H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30 (8), 23432353.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Bellani, G. & Variano, E.A. 2012 Slip velocity of large neutrally buoyant particles in turbulent flows. New J. Phys. 14 (12), 125009.CrossRefGoogle Scholar
Benzi, R., Biferale, L., Calzavarini, E., Lohse, D. & Toschi, F. 2009 Velocity-gradient statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame. Phys. Rev. E 80 (6), 066318.CrossRefGoogle ScholarPubMed
Biferale, L., Meneveau, C. & Verzicco, R. 2014 Deformation statistics of sub-Kolmogorov-scale ellipsoidal neutrally buoyant drops in isotropic turbulence. J. Fluid Mech. 754, 184207.CrossRefGoogle Scholar
Brennen, C.E. 1982 A review of added mass and fluid inertial forces. Tech. Rep. CR 82.010.Google Scholar
Brennen, C.E. 2005 Fundamentals of Multiphase Flow. Cambridge University Press.CrossRefGoogle Scholar
Chevillard, L. & Meneveau, C. 2013 Orientation dynamics of small, triaxial–ellipsoidal particles in isotropic turbulence. J. Fluid Mech. 737, 571596.CrossRefGoogle Scholar
Cisse, M., Homann, H. & Bec, J. 2013 Slipping motion of large neutrally buoyant particles in turbulence. J. Fluid Mech. 735, R1.CrossRefGoogle Scholar
Clift, R., Grace, J.R. & Weber, M.E. 2005 Bubbles, Drops, and Particles. Courier Corporation.Google Scholar
De Silva, I.P.D. & Fernando, H.J.S. 1994 Oscillating grids as a source of nearly isotropic turbulence. Phys. Fluids 6 (7), 24552464.CrossRefGoogle Scholar
Elghobashi, S. 2019 Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 51, 217244.CrossRefGoogle Scholar
Ellingsen, K. & Risso, F. 2001 On the rise of an ellipsoidal bubble in water: oscillatory paths and liquid-induced velocity. J. Fluid Mech. 440, 235268.CrossRefGoogle Scholar
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44, 97121.CrossRefGoogle Scholar
Feigl, K., Megias-Alguacil, D., Fischer, P. & Windhab, E.J. 2007 Simulation and experiments of droplet deformation and orientation in simple shear flow with surfactants. Chem. Engng Sci. 62 (12), 32423258.CrossRefGoogle Scholar
Girimaji, S.S. & Pope, S.B. 1990 Material-element deformation in isotropic turbulence. J. Fluid Mech. 220, 427458.CrossRefGoogle Scholar
Guido, S. & Greco, F. 2001 Drop shape under slow steady shear flow and during relaxation. Experimental results and comparison with theory. Rheol. Acta 40 (2), 176184.CrossRefGoogle Scholar
Huang, M.-J. 1996 Correlations of vorticity and material line elements with strain in decaying turbulence. Phys. Fluids 8 (8), 22032214.CrossRefGoogle Scholar
Huber, C., Su, Y., Nguyen, C.T., Parmigiani, A., Gonnermann, H.M. & Dufek, J. 2014 A new bubble dynamics model to study bubble growth, deformation, and coalescence. J. Geophys. Res. 119 (1), 216239.CrossRefGoogle Scholar
Kameda, M., Katsumata, T. & Ichihara, M. 2008 Deformation of bubbles in a highly viscous pipe flow. Fluid Dyn. Res. 40 (7–8), 576.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. C. R. Acad. Sci. 30, 301305.Google Scholar
Lamb, H. 1924 Hydrodynamics. Cambridge University Press.Google Scholar
Legendre, D., Zenit, R. & Velez-Cordero, J.R. 2012 On the deformation of gas bubbles in liquids. Phys. Fluids 24 (4), 043303.CrossRefGoogle Scholar
Lehr, F., Millies, M. & Mewes, D. 2002 Bubble-size distributions and flow fields in bubble columns. AIChE J. 48 (11), 24262443.CrossRefGoogle Scholar
Liao, Y. & Lucas, D. 2009 A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem. Engng Sci. 64 (15), 33893406.CrossRefGoogle Scholar
Luewisutthichat, W., Tsutsumi, A. & Yoshida, K. 1997 Chaotic hydrodynamics of continuous single-bubble flow systems. Chem. Engng Sci. 52 (21–22), 36853691.CrossRefGoogle Scholar
Lunde, K. & Perkins, R.J. 1998 Shape oscillations of rising bubbles. In In Fascination of Fluid Dynamics, pp. 387–408. Springer.CrossRefGoogle Scholar
Luo, H. & Svendsen, H.F. 1996 Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J. 42 (5), 12251233.CrossRefGoogle Scholar
Maffettone, P.L. & Minale, M. 1998 Equation of change for ellipsoidal drops in viscous flow. J. Non-Newtonian Fluid Mech. 78 (2–3), 227241.CrossRefGoogle Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32 (1), 659708.CrossRefGoogle Scholar
Masuk, A.U.M., Salibindla, A.K.R. & Ni, R. 2021 Simultaneous measurements of deforming Hinze-scale bubbles with surrounding turbulence. J. Fluid Mech. 910, A21.CrossRefGoogle Scholar
Masuk, A.U.M., Salibindla, A. & Ni, R. 2019 a A robust virtual-camera 3D shape reconstruction of deforming bubbles/droplets with additional physical constraints. Intl J. Multiphase Flow 120, 103088.CrossRefGoogle Scholar
Masuk, A.U.M., Salibindla, A., Tan, S. & Ni, R. 2019 b V-ONSET (Vertical Octagonal Noncorrosive Stirred Energetic Turbulence): a vertical water tunnel with a large energy dissipation rate to study bubble/droplet deformation and breakup in strong turbulence. Rev. Sci. Instrum. 90 (8), 085105.CrossRefGoogle ScholarPubMed
Mathai, V., Lohse, D. & Sun, C. 2020 Bubble and buoyant particle laden turbulent flows. Annu. Rev. Condens. Matter Phys. 11, 529559.CrossRefGoogle Scholar
Megías-Alguacil, D., Fischer, P. & Windhab, E.J. 2006 Determination of the interfacial tension of low density difference liquid–liquid systems containing surfactants by droplet deformation methods. Chem. Engng Sci. 61 (5), 13861394.CrossRefGoogle Scholar
Mordant, N., Crawford, A.M. & Bodenschatz, E. 2004 Experimental Lagrangian acceleration probability density function measurement. Physica D 193 (1–4), 245251.CrossRefGoogle Scholar
Mougin, G. & Magnaudet, J. 2001 Path instability of a rising bubble. Phys. Rev. Lett. 88 (1), 014502.CrossRefGoogle ScholarPubMed
Müller-Fischer, N., Tobler, P., Dressler, M., Fischer, P. & Windhab, E.J. 2008 Single bubble deformation and breakup in simple shear flow. Exp. Fluids 45 (5), 917926.CrossRefGoogle Scholar
Ni, R., Huang, S.-D. & Xia, K.-Q. 2012 Lagrangian acceleration measurements in convective thermal turbulence. J. Fluid Mech. 692, 395419.CrossRefGoogle Scholar
Ni, R., Kramel, S., Ouellette, N.T. & Voth, G.A. 2015 Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence. J. Fluid Mech. 766, 202225.CrossRefGoogle Scholar
Ni, R., Ouellette, N.T. & Voth, G.A. 2014 Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence. J. Fluid Mech. 743, R3.CrossRefGoogle Scholar
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G.A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109 (13), 134501.CrossRefGoogle ScholarPubMed
Pumir, A., Bodenschatz, E. & Xu, H. 2013 Tetrahedron deformation and alignment of perceived vorticity and strain in a turbulent flow. Phys. Fluids 25 (3), 035101.CrossRefGoogle Scholar
Qi, Y., Masuk, A.U.M. & Ni, R. 2020 Towards a model of bubble breakup in turbulence through experimental constraints. Intl J. Multiphase Flow 132, 103397.CrossRefGoogle Scholar
Ravelet, F., Colin, C. & Risso, F. 2011 On the dynamics and breakup of a bubble rising in a turbulent flow. Phys. Fluids 23 (10), 103301.CrossRefGoogle Scholar
Riboux, G., Risso, F. & Legendre, D. 2010 Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509539.CrossRefGoogle Scholar
Rust, A.C. & Manga, M. 2002 Bubble shapes and orientations in low Re simple shear flow. J. Colloid Interface Sci. 249 (2), 476480.CrossRefGoogle Scholar
Salibindla, A.K.R., Masuk, A.U.M., Tan, S. & Ni, R. 2020 Lift and drag coefficients of deformable bubbles in intense turbulence determined from bubble rise velocity. J. Fluid Mech. 894, A20.CrossRefGoogle Scholar
Schanz, D., Gesemann, S. & Schröder, A. 2016 Shake-the-box: Lagrangian particle tracking at high particle image densities. Exp. Fluids 57 (5), 70.CrossRefGoogle Scholar
Shin, M. & Koch, D.L. 2005 Rotational and translational dispersion of fibres in isotropic turbulent flows. J. Fluid Mech. 540, 143173.CrossRefGoogle Scholar
Spandan, V., Lohse, D. & Verzicco, R. 2016 Deformation and orientation statistics of neutrally buoyant sub-Kolmogorov ellipsoidal droplets in turbulent Taylor–Couette flow. J. Fluid Mech. 809, 480501.CrossRefGoogle Scholar
Spandan, V., Verzicco, R. & Lohse, D. 2017 Deformable ellipsoidal bubbles in Taylor–Couette flow with enhanced Euler–Lagrangian tracking. Phys. Rev. Fluids 2 (10), 104304.CrossRefGoogle Scholar
Srdic, A., Fernando, H.J.S. & Montenegro, L. 1996 Generation of nearly isotropic turbulence using two oscillating grids. Exp. Fluids 20 (5), 395397.CrossRefGoogle Scholar
Tan, S., Salibindla, A., Masuk, A.U.M. & Ni, R. 2020 Introducing openLPT: new method of removing ghost particles and high-concentration particle shadow tracking. Exp. Fluids 61 (2), 47.CrossRefGoogle Scholar
Tayler, A.B., Holland, D.J., Sederman, A.J. & Gladden, L.F. 2012 Exploring the origins of turbulence in multiphase flow using compressed sensing MRI. Phys. Rev. Lett. 108 (26), 264505.CrossRefGoogle ScholarPubMed
Variano, E.A., Bodenschatz, E. & Cowen, E.A. 2004 A random synthetic jet array driven turbulence tank. Exp. Fluids 37 (4), 613615.CrossRefGoogle Scholar
Voth, G.A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249276.CrossRefGoogle Scholar
Wang, T., Wang, J. & Jin, Y. 2003 A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow. Chem. Engng Sci. 58 (20), 46294637.CrossRefGoogle Scholar
Xu, H., Pumir, A. & Bodenschatz, E. 2011 The Pirouette effect in turbulent flows. Nat. Phys. 7 (9), 709712.CrossRefGoogle Scholar