Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T19:11:24.477Z Has data issue: false hasContentIssue false

Optimal suction of the boundary layer taking account of initial turbulence and surface roughness

Published online by Cambridge University Press:  28 March 2006

L. F. Kozlov
Affiliation:
Institute of Hydromechanics, UkSSR Academy of Sciences, Kiev, U.S.S.R.

Abstract

In the paper, on the basis of the three-moment equations, simple formulae for properties of a laminar boundary layer with suction are obtained. An equation relating the transition point critical Reynolds number to initial turbulence and surface roughness is presented. An approximate method for prediction of optimal suction of a boundary layer, including the main effects controlling transition of a laminar boundary layer into a turbulent one, is developed.

Type
Research Article
Copyright
© 1968 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Crabtree, L. F. 1958 Prediction of transition in the boundary layer on an aerofoil. J. R. Aero. Soc. no. 7. 62, 525528.Google Scholar
Dorodnitsyn, A. A. & Loitsyansky, L. G. 1945 On the theory of turbulent transition of a laminar boundary layer Prikl. Mat. i Mekh. 9, no. 4, 269285.Google Scholar
Dryden, H. L. 1936 Air flow in the boundary layer near a plate. Nat. Advis. Comm. Aeronaut. Rept. no. 562.Google Scholar
Dryden, H. L. 1939 Turbulence and boundary layers J. Aero. Sci. 6, no. 3.Google Scholar
Feindt, E. G. 1956 Untersuchungen über die Abhängigkeit des Umschlages laminarturbulent von der Oberflachenrauhigkeit und der Druck-Verteilung. D.F.L. Inst. Aerodynamik, Braunschweig, Bericht 56/10.Google Scholar
Hall, A. A. & Hislop, G. S. 1938 Experiments on the transition of the laminar boundary layer on a flat plate. Aero. Res. Comm., Rept. & Mem. no. 1843.Google Scholar
Kozlov, L. F. 1962a Prediction of turbulent transition of a laminar boundary layer caused by turbulence of incoming flow J. Eng. Phys. 5, no. 3, 103106.Google Scholar
Kozlov, L. F. 1962b Approximate integration of laminar boundary layer equations for an incompressible boundary layer on a porous plate. Zh. Prikl. Mekh. i Tekhn. Fiz. no. 5, 121127.Google Scholar
Kozlov, L. F. 1963 Optimal suction of a porous plate boundary layer in incompressible liquid J. Eng. Phys. 6, no. 10, 8892.Google Scholar
Kozlov, L. F. 1964 Approximate prediction method for liquid suction from airfoil boundary layer with porous surface. Zh. Prikl. Mech. i Tekhn. Fiz. no. 3, 169171.Google Scholar
Preston, E. J. 1958 Prediction of transition in the boundary layer on an aerofoil. J. R. Aero. Soc. no. 12, 62, 901.Google Scholar
Pretsch, I. 1943 Die Leistungsersparnis durch Grenzschichtbeeinflussung beim Schleppen einer ebenen Platte. Dtsch. Luftfahrtforschung, UM N 3048.Google Scholar
Schlichting, H. 1959 Entstehung der Turbulenz. Handbuch Phys. B. 8/1. Berlin.Google Scholar
Schubauer, G. B. & Skramstad, H. K. 1947 Laminar boundary layer oscillations and stability of laminar flow. J. Aero. Sci. no. 14, 6978.Google Scholar
Tani, I., Hama, F. R. & Mituishi, S. 1954 On the effect of a single roughness element on boundary-layer transition Rept. Inst. Sci. Tech., Univ. Tokyo, 8, 125.Google Scholar
Tani, I., Juchi, J. & Yamamoto, K. 1954 Further experiments on the effect of a single roughness element on boundary layer transition. Rept. Inst. Sci. Tech., Univ. Tokyo, 8, 171.Google Scholar
Taylor, G. I. 1936 Statistical theory of turbulence. V. Effect of turbulence on a boundary layer. Proc. R. Soc. A 156, 307310.Google Scholar
Wieghardt, K. 1954 Zur Berechnung ebener und drehsymmetrischer Grenzschichten mit kontinuierlicher Absaugung Ing.-Arch. 22, 368.Google Scholar
Wortmann, F. 1958 Grenzschicht-Absaugung. Grenzschicht-Forschung Symposium (Freiburg). Springer-Verlag, 343377.
Wright, E. A. & Bailey, G. S. 1939 Laminar frictional resistance with pressure gradient J. Aero. Sci. 6, no. 3, 485.Google Scholar