Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-21T10:36:16.012Z Has data issue: false hasContentIssue false

Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge

Published online by Cambridge University Press:  30 October 2007

FRANCK SIMON
Affiliation:
ONERA, Applied Aerodynamics Department, F-92322 Châtillon, France
SEBASTIEN DECK
Affiliation:
ONERA, Applied Aerodynamics Department, F-92322 Châtillon, France
PHILIPPE GUILLEN
Affiliation:
ONERA, Applied Aerodynamics Department, F-92322 Châtillon, France
PIERRE SAGAUT
Affiliation:
Institut Jean Le Rond d'Alembert, UMR 7190, Université Pierre et Marie Curie - Paris 6, F-75005 Paris, France
ALAIN MERLEN
Affiliation:
Laboratoire de Mécanique de Lille, UMR 8107, Université des sciences et technologies de Lille, F-59655 Villeneuve d'Ascq, France

Abstract

Numerical simulation of a compressible mixing layer past an axisymmetric trailing edge is carried out for a Reynolds number based on the diameter of the trailing edge approximately equal to 2.9 × 106. The free-stream Mach number at separation is equal to 2.46, which corresponds to experiments and leads to high levels of compressibility. The present work focuses on the evolution of the turbulence field through extra strain rates and on the unsteady features of the annular shear layer. Both time-averaged and instantaneous data are used to obtain further insight into the dynamics of the flow. An investigation of the time-averaged flow field reveals an important shear-layer growth rate in its initial stage and a strong anisotropy of the turbulent field. The convection velocity of the vortices is found to be somewhat higher than the estimated isentropic value. This corroborates findings on the domination of the supersonic mode in planar supersonic/subsonic mixing layers. The development of the shear layer leads to a rapid decrease of the anisotropy until the onset of streamline realignment with the axis. Due to the increase of the axisymmetric constraints, an adverse pressure gradient originates from the change in streamline curvature. This recompression is found to slow down the eddy convection. The foot shock pattern features several convected shocks emanating from the upper side of the vortices, which merge into a recompression shock in the free stream. Then, the flow accelerates and the compressibility levels quickly drop in the turbulent developing wake. Some evidence of the existence of large-scale structures in the near wake is found through the domination of the azimuthal mode m = 1 for a Strouhal number based on trailing-edge diameter equal to 0.26.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, N. A. 2000 Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Re θ = 1685. J. Fluid Mech. 420, 4783.CrossRefGoogle Scholar
Barre, S., Quine, C. & Dussauge, J. P. 1994 Compressibility effects on the structure of supersonic mixing layers: experimental results. J. Fluid Mech. 259, 4778.CrossRefGoogle Scholar
Baurle, R. A., Tam, C.-J., Edwards, J. R. & Hassan, H. A. 2003 Hybrid simulation approach for cavity flows: blending, algorithm, and boundary treatment issues. AIAA J. 41, 14631480.CrossRefGoogle Scholar
Bell, J. H. & Mehta, R. D. 1990 Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J. 28, 20342042.CrossRefGoogle Scholar
Bogdanoff, D. W. 1983 Compressibility effects in turbulent shear layers. AIAA J. 21, 926927.CrossRefGoogle Scholar
Bourdon, C. J. & Dutton, J. C. 1999 Planar visualizations of large-scale turbulent structures in axisymmetric supersonic flow. AIAA J. 11, 201213.Google Scholar
Bourdon, C. J. & Dutton, J. C. 2000 Shear layer flapping and interface convolution in a separated supersonic flow. AIAA J. 38, 19071915.CrossRefGoogle Scholar
Bourdon, C. J. & Dutton, J. C. 2001 Effects of boattailing on the turbulence structure of a compressible base flow. J. Spacecraft Rockets 38, 534541.CrossRefGoogle Scholar
Bradshaw, P. 1974 The effect of mean compression or dilatation on the turbulence structure for supersonic boundary layers. J. Fluid Mech. 63, 449464.CrossRefGoogle Scholar
Breidenthal, R. 1990 The sonic eddy – a model for compressible turbulence. AIAA Paper 90-0495.CrossRefGoogle Scholar
Breuer, M., Jocivic, N. & Mazaev, K. 2003 Comparison of DES, RANS and LES for the separated flow around a flate plate at high incidence. Intl. J. Numer. Meth. Fluids 41, 357388.CrossRefGoogle Scholar
Bunyajitradulya, A. & Papamoschou, D. 1994 Acetone PLIF imaging of turbulent shear-layer structure at high convective Mach number. AIAA Paper 94-0617.CrossRefGoogle Scholar
Cannon, P. M., Elliott, G. S. & Dutton, J. C. 2005 Time-series axisymmetric base-pressure measurements with simultaneous near-wake visualizations. AIAA Paper 2005-5285.CrossRefGoogle Scholar
Chandrsuda, C. & Bradshaw, P. 1981 Turbulence structure of a reattaching mixing layer. J. Fluid Mech. 110, 171194.CrossRefGoogle Scholar
Clemens, N. T. & Mungal, M. G. 1995 Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284, 171216.CrossRefGoogle Scholar
Clemens, N. T., Petullo, S. P. & Dolling, D. S. 1996 Large-scale structure evolution in supersonic interacting shear layers. AIAA J. 34, 20622070.CrossRefGoogle Scholar
Dandois, J., Garnier, E. & Sagaut, P. 2007 Numerical simulation of active separation control by a synthetic jet. J. Fluid Mech. 574, 2558.CrossRefGoogle Scholar
Deck, S., Garnier, E. & Guillen, P. 2002 Turbulence modelling applied to space launcher configurations. J. Turbulence 3, 121.CrossRefGoogle Scholar
Deck, S., Duveau, P., d'Espiney, P. & Guillen, P. 2002 Development and application of Spalart Allmaras one equation turbulence model to three-dimensional supersonic complex configurations. Aerospace Sci. Tech. 6, 171183.CrossRefGoogle Scholar
Deck, S. 2005 a Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43, 15561566.CrossRefGoogle Scholar
Deck, S. 2005 b Zonal-detached eddy simulation of the flow around a high-lift configuration. AIAA J. 43, 23722384.CrossRefGoogle Scholar
Deck, S. & Thorigny, P. 2007 Unsteadiness of an axisymmetric separating-reattaching flow. Phys. Fluids 19, 065103.CrossRefGoogle Scholar
Demetriades, A. 1968 Turbulent front structure of an axisymmetric compressible wake. J. Fluid Mech. 34, 465480.CrossRefGoogle Scholar
Demetriades, A. 1976 Turbulence correlations in a compressible wake. J. Fluid Mech. 74, 251267.CrossRefGoogle Scholar
Deprés, D. 2003 Analyse physique et modélisation des instationnarités dans les écoulements d'arrière-corps transsoniques. PhD thesis, University of Aix-Marseille.Google Scholar
Dolling, S. & Murphy, M. T. 1983 Unsteadiness of the separation shock wave structure in a supersonic ramp flowfield. AIAA J. 12, 16281634.CrossRefGoogle Scholar
Dolling, S. 2001 Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39, 15171531.CrossRefGoogle Scholar
Elliot, G. S., Samimy, M. & Arnette, S. A. 1995 The characteristics and evolution of large-scale structures in compressible mixing-layers. Phys. Fluids 7, 864.CrossRefGoogle Scholar
Erlebacher, G., Hussaini, M. Y., Speziale, C. G. & Zang, T. A. 1992 Toward the large-eddy simulation of compressible turbulent flows. J. Fluid Mech. 238, 155185.CrossRefGoogle Scholar
Forsythe, J. R., Hoffman, K. A., Cummings, R. M. & Squires, K. D. 2002 Detached-eddy simulation with compressibility corrections applied to a supersonic axisymmetric base flow. J. Fluids Engng. Trans. ASME: 124, 911923.CrossRefGoogle Scholar
Fourguette, D. C., Mungal, M. G. & Dibble, R. W. 1991 Time evolution of the shear layer of a supersonic axisymmetric jet. AIAA J. 29, 11231130.CrossRefGoogle Scholar
Freund, J. B., Lele, S. K. & Moin, P. 2000 Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate. J. Fluid Mech. 421, 229267.CrossRefGoogle Scholar
Friedrich, R. & Arnal, M. 1990 Analysing turbulent backward-facing step flow with the lowpass-filtered Navier-Stokes equations. J. Wind Engng Ind. Aerodyn. 35, 101128.CrossRefGoogle Scholar
Fuchs, H. V., Mercker, E. & Michel, U. 1979 Large-scale coherent structures in the wake of axisymmetric bodies. J. Fluid Mech. 93, 185207.CrossRefGoogle Scholar
Fureby, C., Nilsson, Y. & Andersson, K. 1999 Large-eddy simulation of supersonic base flow. AIAA Paper 99-0426.CrossRefGoogle Scholar
Gai, S. L., Hughes, D. P. & Perry, M. S. 2002 Large-scale structures and growth of a flat plate compressible wake. AIAA J. 40, 11641169.CrossRefGoogle Scholar
Gaviglio, J., Dussauge, J.-P., Debieve, J.-F. & Favre, A. 1977 Behavior of a turbulent flow, strongly out of equilibrium, at supersonic speeds. Phys. Fluids 20, 179192.CrossRefGoogle Scholar
Goebel, S. G. & Dutton, J. G. 1990 Experimental study of compressible turbulent mixing layers. AIAA J. 29, 538546.CrossRefGoogle Scholar
Gruber, M. R., Messersmith, N. L. & Dutton, J. G. 1993 Three-dimensional velocity field in a compressible mixing layer. AIAA J. 31, 20612067.CrossRefGoogle Scholar
Harsha, P. T. & Lee, S. C. 1970 Correlation between turbulent shear stress and turbulent kinetic energy. AIAA J. 8, 1508.CrossRefGoogle Scholar
Herrin, J. L. & Dutton, J. C. 1994 a Supersonic base flow experiments in the near wake of a cylindrical afterbody. AIAA J. 32, 7783.CrossRefGoogle Scholar
Herrin, J. L. & Dutton, J. C. 1994 b Supersonic near-wake afterbody boattailing effects on axisymmetric bodies. J. Spacecraft Rockets 31, 10211028.CrossRefGoogle Scholar
Herrin, J. L. & Dutton, J. C. 1995 Effect of a rapid expansion on the development of compressible free shear layers. Phys. Fluids 7, 159171.CrossRefGoogle Scholar
Herrin, J. L. & Dutton, J. C. 1997 The turbulence structure of a reattaching axisymmetric compressible free shear layer. Phys. Fluids 9, 35023512.CrossRefGoogle Scholar
Hudy, L. M., Naguib, A. M. & Humphreys, W. M. Jr, 2003 Wall-presure-array measurements beneath a separating/reattaching flow region. Phys. Fluids 15, 706717.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.CrossRefGoogle Scholar
Jackson, T. L. & Grosch, C. E. 1989 Inviscid spatial stability of a compressible mixing layer. J. Fluid Mech. 208, 609637.CrossRefGoogle Scholar
Janssen, J. R. & Dutton, J. C. 2004 Time-series analysis of supersonic base pressure fluctuations. AIAA J. 43, 605613.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jovic, S. 1996 An experimental study of a separated/reattached flow behind a backward-facing step. Re H = 37,000. NASA Tech. Mem. 110384.Google Scholar
Kawai, S. & Fujii, K. 2005 Computational study of supersonic base flow using hybrid turbulence methodology. AIAA J. 43, 12651275.CrossRefGoogle Scholar
Larchevêque, L., Sagaut, P., Mary, I., Labbé, O. & Comte, P. 2003 Large-eddy simulation of a compressible flow past a deep cavity. Phys. Fluids 15, 193210.CrossRefGoogle Scholar
Larchevêque, L., Sagaut, P., , T.H. & Comte, P. 2004 Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number. J. Fluid Mech. 516, 265301.CrossRefGoogle Scholar
Mahadevan, R. & Loth, E. 1994 High-speed cinematography of compressible mixing layers. Exps. Fluids 17, 179.CrossRefGoogle Scholar
Martens, S., Kimzie, K. W. & McLaughlin, D. K. 1994 Wave structure of coherent instabilities in a planar shear layer. AIAA Paper 94-0822.CrossRefGoogle Scholar
Mary, I. & Sagaut, P. 2002 Large-eddy simulation of a flow around an airfoil near stall. AIAA J. 40, 11391145.CrossRefGoogle Scholar
Mabey, D. G. 1972 Analysis and correlation of data on pressure fluctuations in separated flow. J. Aircraft 9, 642645.CrossRefGoogle Scholar
Messersmith, N. L. & Dutton, J. C. 1996 Characteristic features of large structures in compressible mixing layers. AIAA J. 34, 18141821.CrossRefGoogle Scholar
Monkewitz, P. A. 1988 A note on vortex shedding from axisymmetric bluff bodies. J. Fluid Mech. 192, 561575.CrossRefGoogle Scholar
Motallebi, F. & Norbury, J. F. 1981 The effect of base bleed on vortex shedding and base pressure in compressible flow. J. Fluid Mech. 110, 272292.CrossRefGoogle Scholar
Naguib, A. M. & Hudy, L. M. 2003 Stationary and propagating low-frequency wall-pressure disturbances in a separating/reattaching flow. AIAA Paper 2003-1126.CrossRefGoogle Scholar
Olsen, M. G. & Dutton, J. G. 2003 Planar velocity measurements in a weakly compressible mixing layer. J. Fluid Mech. 486, 5177.CrossRefGoogle Scholar
Pantano, C. & Sarkar, S. 2002 A study of compressibility effects in the highspeed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329371.CrossRefGoogle Scholar
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.CrossRefGoogle Scholar
Papamoschou, D. 1990 Communication paths in the compressible shear layer. AIAA Paper 90-0155.CrossRefGoogle Scholar
Papamoschou, D. 1991 Structure of the compressible turbulent shear layer. AIAA J. 29, 680.CrossRefGoogle Scholar
Papamoschou, D. & Bunyajitradulya, A. 1995 Double-exposure PLIF imaging of compressible shear layers. AIAA Paper 95-0531.CrossRefGoogle Scholar
Papamoschou, D. & Bunyajitradulya, A. 1997 Evolution of large eddies in compressible shear layers. Phys. Fluids 9, 756.CrossRefGoogle Scholar
Péchier, M., Guillen, P. & Cayzac, R. 2001 Magnus effect over finned projectiles J. Spacecraft Rockets 38, 542549.CrossRefGoogle Scholar
Poggie, J. & Smits, A. J. 1996 Large-scale coherent turbulence structures in a compressible mixing layer flow. AIAA Paper 96-0440.CrossRefGoogle Scholar
Poggie, J. & Smits, A. J. 2001 Shock unsteadiness in a reattaching shear layer. J. Fluid Mech. 429, 155185.CrossRefGoogle Scholar
Roberts, J. B. 1973 Coherence measurements in an axisymmetric wake. AIAA J. 11, 15691571.CrossRefGoogle Scholar
Rockwell, D. 1983 Oscillations of impinging shear layers. AIAA J. 21, 645664.CrossRefGoogle Scholar
Sagaut, P., Deck, S. & Terracol, M. 2006 Multiscale and Multiresolution Approaches in Turbulence. Imperial College Press, London, UK.CrossRefGoogle Scholar
Samimy, M., Petrie, H. L. & Addy, A. L. 1986 A study of compressible turbulent reattaching free shear layers. AIAA J. 24, 261267.CrossRefGoogle Scholar
Samimy, M. & Elliot, G. S. 1990 Effects of compressibility on the characteristics of free shear flows. AIAA J. 28, 439445.CrossRefGoogle Scholar
Sandbberg, R. D. & Fasel, H. F. 2006 a Direct numerical simulation of transitional supersonic base flows. AIAA J. 44, 848858.CrossRefGoogle Scholar
Sandberg, R. D. & Fasel, H. F. 2006 b Numerical investigation of transitional supersonic axisymmetric wakes. J. Fluid Mech. 563, 141.CrossRefGoogle Scholar
Sandham, N. D. & Reynolds, W. C. 1989 Compressible mixing layer: linear theory and direct simulation. AIAA J. 28, 618624.CrossRefGoogle Scholar
Sandham, N. D. & Reynolds, W. C. 1991 Three dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224, 133158.CrossRefGoogle Scholar
Sarkar, S. 1995 The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163186.CrossRefGoogle Scholar
Sevilla, A. & Martinez-Bazan, C. 2004 Vortex shedding in high Reynolds number axisymmetric bluff-body wakes : Local linear instability and global bleed control. Phys. Fluids 16, 34603469.CrossRefGoogle Scholar
Shur, M., Spalart, P., Strelets, M. & Travin, A. 1999 Detached-eddy simulation of an airfoil at high angle of attack. 4th Intl. Symp. Engineering Turbulence Modelling and Measurements, pp. 669678. Elsevier.Google Scholar
Shvets, A. I. 1979 Base pressure fluctuations. Fluid Dyn. 14, 394401.CrossRefGoogle Scholar
Simon, F., Deck, S., Guillen, P. & Sagaut, P. 2006 RANS/LES simulations of supersonic base flow. AIAA J. 44, 25782590.CrossRefGoogle Scholar
Simon, F., Deck, S., Guillen, P., Cayzac, R. & Merlen, A. 2007 Zonal-detached-eddy simulation of projectiles in the subsonic and transonic regimes. AIAA J. 45, 16061619.CrossRefGoogle Scholar
Simone, A., Coleman, G. N. & Cambon, C. 1997 The effect of compressibility on turbulent shear flow: a rapid distorsion theory and direct numerical simulation study. J. Fluid Mech. 330, 307338.CrossRefGoogle Scholar
Smith, K. M. & Dutton, J. C. 1996 Investigation of large-scale structures in supersonic planar base flows. AIAA J. 34, 11461152.CrossRefGoogle Scholar
Smith, K. M. & Dutton, J. C. 1999 Evolution and convection of large-scale structures in supersonic reattaching shear flows. Phys. Fluids 11, 21272138.CrossRefGoogle Scholar
Smith, K. M. & Dutton, J. C. 2001 The effects of expansion strength on large-scale structures in compressible free shear layers. Phys. Fluids 13, 20762086.CrossRefGoogle Scholar
Spalart, P. R. & Allmaras, S. R. 1992 A one equation turbulence model for aerodynamic flows. AIAA Paper 92-0439.CrossRefGoogle Scholar
Spalart, P. R. & Allmaras, S. R. 1994 A one equation turbulence model for aerodynamic flows. La Recherche Aérospatiale, 5–21.Google Scholar
Spalart, P., Jou, W. H., Strelets, M. & Allmaras, S. R. 1997 Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In Proc. 1st AFSOR Int. Conf. on DNS/LES, Ruston.Google Scholar
Spalart, P. R. 2001 Young-person's guide to detached-eddy simulation grids. NASA/CR-2001-211032.Google Scholar
Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. K. & Travin, A. 2006 A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181195.CrossRefGoogle Scholar
Thurow, B., Samimy, M. & Lempert, W. 2003 Compressibility effects on turbulence structures of axisymmetric mixing layers. Phys. Fluids 15 (6), 17551765.CrossRefGoogle Scholar
Urban, W. D. & Mungal, M. G. 2001 Planar velocity measurements in compresible mixing layers J. Fluid Mech. 431, 189222.CrossRefGoogle Scholar
Vreman, A. W., Sandham, N. D. & Luo, K. H. 1996 Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech. 320, 235258.CrossRefGoogle Scholar
Vreman, B., Geurts, B. & Kuerten, H. 1997 Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech. 339, 357390.CrossRefGoogle Scholar
Wee, D., Yi, T., Annaswamy, A. & Ghoniem, A. F. 2004 Self-sustained oscillations and vortex shedding in backward-facing step flows: Simulation and linear instability analysis. Phys. Fluids 16, 33613373.CrossRefGoogle Scholar
Wu, P. P. & Miles, R. B. 2001 Megahertz visualization of compression-corner shock structures. AIAA J. 39, 15421546.CrossRefGoogle Scholar