Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-21T03:03:28.327Z Has data issue: true hasContentIssue false

Instability dynamics of viscous fingering interaction on dual displacement fronts

Published online by Cambridge University Press:  20 September 2024

Anindityo Patmonoaji*
Affiliation:
Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan Department of Mechanical Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
Yuichiro Nagatsu*
Affiliation:
Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
Manoranjan Mishra
Affiliation:
Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar 140001, India
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

We explored the instability dynamics of the viscous fingering interaction in dual displacement fronts by varying the viscosity configuration. Four regimes of rear-dominated fingering, front-dominated fingering, dual fingering and stable were identified. By using the breakthrough time, which refers to the breakup of the dual displacement fronts, the instability dynamics were modelled, and a regime map was developed. These serve as a tool for effectively harnessing the dual displacement fronts for various applications, such as hydrogeology, petroleum, chemical processes and microfluidics.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzali, S., Rezaei, N. & Zendehboudi, S. 2018 A comprehensive review on enhanced oil recovery by water alternating gas (wag) injection. Fuel 227, 218246.Google Scholar
Bakharev, F., Enin, A., Groman, A., Kalyuzhnyuk, A., Matveenko, S., Petrova, Y., Starkov, I. & Tikhomirov, S. 2022 Velocity of viscous fingers in miscible displacement: comparison with analytical models. J. Comput. Appl. Maths 402, 113808.Google Scholar
Cardoso, S.S.S. & Woods, A.W. 1995 The formation of drops through viscous instability. J. Fluid Mech. 289, 351378.Google Scholar
Chaudhuri, A. & Vishnudas, R. 2018 A systematic numerical modeling study of various polymer injection conditions on immiscible and miscible viscous fingering and oil recovery in a five-spot setup. Fuel 232, 431443.Google Scholar
Chen, C.Y., Huang, Y.C., Huang, Y.S. & Miranda, J.A. 2015 Enhanced mixing via alternating injection in radial Hele-Shaw flows. Phys. Rev. E 92, 043008.Google Scholar
Coleman, J.T. & Sinton, D. 2005 A sequential injection microfluidic mixing strategy. Microfluid Nanofluid 1, 319327.Google Scholar
De Malsche, W., Op De Beeck, J., Gardeniers, H. & Desmet, G. 2009 Visualization and quantification of the onset and the extent of viscous fingering in sub- pillar columns. J. Chromatogr. A 1216, 55115517.Google Scholar
De Wit, A. 2020 Chemo-hydrodynamic patterns and instabilities. Annu. Rev. Fluid Mech. 52, 531555.Google Scholar
De Wit, A., Bertho, Y. & Martin, M. 2005 Viscous fingering of miscible slices. Phys. Fluids 17, 054114.Google Scholar
De Wit, A. & Homsy, G.M. 1999 Nonlinear interactions of chemical reactions and viscous fingering in porous media. Phys. Fluids 11, 949951.Google Scholar
Glasgow, I. & Aubry, N. 2003 Enhancement of microfluidic mixing using time pulsing. Lab on a Chip 3, 114120.Google Scholar
Hashimoto, M., Garstecki, P., Stone, H.A. & Whitesides, G.M. 2008 Interfacial instabilities in a microfluidic Hele-Shaw cell. Soft. Matt. 4, 14031413.Google Scholar
Haudin, F., Callewaert, M., De Malsche, W. & De wit, A. 2016 Influence of nonideal mixing properties on viscous fingering in micropillar array column. Phys. Rev. Fluids 1, 074001.Google Scholar
Hejazi, S.H. & Azaiez, J. 2012 Stability of reactive interfaces in saturated porous media under gravity in the presence of transverse flows. J. Fluid Mech. 695, 439466.Google Scholar
Hejazi, S.H., Trevelyan, P.M.J., Azaiez, J. & De Wit, A. 2010 Viscous fingering of a miscible reactive ${\rm A} + {\rm B}\rightarrow {\rm C}$ interface: a linear stability analysis. J. Fluid Mech. 652, 501528.Google Scholar
Hill, S. 1952 Channelling in packed columns. Chem. Engng Sci. 1, 247253.Google Scholar
Homsy, G.M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271311.Google Scholar
Hota, T.K., Pramanik, S. & Mishra, M. 2015 Stability of miscible displacements in porous media: rectilinear flow. Phys. Rev. E 92, 23922398.Google Scholar
Jha, B., Cueto-Felgueroso, L. & Juanes, R. 2013 Synergetic fluid mixing from viscous fingering and alternating injection. Phys. Rev. Lett. 111, 144501.Google Scholar
Le Van, S. & Chon, B.H. 2017 Effects of salinity and slug size in miscible ${\rm CO}_2$ water-alternating-gas core flooding experiments. J. Ind. Engng Chem. 52, 99107.Google Scholar
MacInnes, J.M., Chen, Z. & Allen, R.W.K. 2005 Investigation of alternating-flow mixing in microchannels. Chem. Engng Sci. 60, 34533467.Google Scholar
Mayfield, K.J., Shalliker, R.A., Catchpoole, H.J., Sweeney, A.P., Wong, V. & Guiochon, G. 2005 Viscous fingering induced flow instability in multidimensional liquid chromatography. J. Chromatogr. A 1080, 124131.Google Scholar
Mishra, M., Martin, M. & De Wit, A. 2008 Differences in miscible viscous fingering of finite width slices with positive or negative log-mobility ratio. Phys. Rev. E 78, 066306.Google Scholar
Mishra, M., Martin, M. & De Wit, A. 2009 Influence of miscible viscous fingering of finite slices on an adsorbed solute dynamics. Phys. Fluids 21, 083101.Google Scholar
Mishra, M., Martin, M. & De Wit, A. 2010 Influence of miscible viscous fingering with negative log-mobility ratio on spreading of adsorbed analytes. Chem. Engng Sci. 65, 23922398.Google Scholar
Nagatsu, Y. & De Wit, A. 2011 Viscous fingering of a miscible reactive ${\rm A} + {\rm B}\rightarrow {\rm C}$ interface for an infinitely fast chemical reaction: nonlinear simulations. Phys. Fluids 23, 043103.Google Scholar
Nijjer, J.S., Hewitt, D.R. & Neufeld, J.A. 2018 The dynamics of miscible viscous fingering from onset to shutdown. J. Fluid Mech. 837, 520545.Google Scholar
Paraskeva, C.A., Charalambous, P.C., Stokka, L., Klepetsanis, P.G., Koutsoukos, P.G., Read, P., Ostvold, T. & Payatakes, A.C. 2000 Sandbed consolidation with mineral precipitation. J. Colloid Interface Sci. 232, 326339.Google Scholar
Saffman, P.G. & Taylor, G.I. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 7394.Google Scholar
Shalliker, R.A., Catchpoole, H.J., Dennis, G.R. & Guiochon, G. 2007 Visualising viscous fingering in chromatography columns: high viscosity solute plug. J. Chromatogr. A 1142, 4855.Google Scholar
Shalliker, R.A. & Guiochon, G. 2010 Solvent viscosity mismatch between the solute plug and the mobile phase: considerations in the applications of two-dimensional HPLC. Analyst 135, 222229.Google Scholar
Sharma, V., Bin Othman, H., Nagatsu, Y. & Mishra, M. 2021 Viscous fingering of miscible annular ring. J. Fluid Mech. 916, A14.Google Scholar
Talaghat, M.R., Esmaeilzadeh, F. & Mowla, D. 2009 Sand production control by chemical consolidation. J. Petrol. Sci. Engng 67, 3440.Google Scholar
Tan, C.T. & Homsy, G.M. 1988 Simulation of nonlinear viscous fingering in miscible displacement. Phys. Fluids 31, 13301338.Google Scholar
Vishnudas, R. & Chaudhuri, A. 2017 A comprehensive numerical study of immiscible and miscible viscous fingers during chemical enhanced oil recovery. Fuel 194, 480490.Google Scholar
Wood, M., Simmons, C.T. & Hutson, J.L. 2004 A breakthrough curve analysis of unstable density-driven flow and transport in homogeneous porous media. Water Resour. Res. 40, W03505.Google Scholar
Yuan, Q. & Azaiez, J. 2014 Cyclic time-dependent reactive flow displacements in porous media. Chem. Engng Sci. 109, 136146.Google Scholar
Supplementary material: File

Patmonoaji et al. supplementary movie 1

Front Dominated Fingering (RB = 0.4; RC = 2.0)
Download Patmonoaji et al. supplementary movie 1(File)
File 129.8 KB
Supplementary material: File

Patmonoaji et al. supplementary movie 2

Dual Fingering (RB = 1.0; RC = 2.0)
Download Patmonoaji et al. supplementary movie 2(File)
File 134.2 KB
Supplementary material: File

Patmonoaji et al. supplementary movie 3

Rear Dominated Fingering (RB = 1.6; RC = 2.0)
Download Patmonoaji et al. supplementary movie 3(File)
File 125.1 KB
Supplementary material: File

Patmonoaji et al. supplementary movie 4

Stable (RB = −0.5; RC = −1.0)
Download Patmonoaji et al. supplementary movie 4(File)
File 83.7 KB
Supplementary material: File

Patmonoaji et al. supplementary material 5

Patmonoaji et al. supplementary material
Download Patmonoaji et al. supplementary material 5(File)
File 51.8 KB