Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-03T00:26:52.217Z Has data issue: false hasContentIssue false

The influence of two-dimensional temperature modulation on nonlinear Marangoni waves in two-layer films

Published online by Cambridge University Press:  11 May 2018

Alexander A. Nepomnyashchy
Affiliation:
Department of Mathematics, Technion – Israel Institute of Technology, 32000 Haifa, Israel
Ilya B. Simanovskii*
Affiliation:
Department of Mathematics, Technion – Israel Institute of Technology, 32000 Haifa, Israel
*
Email address for correspondence: [email protected]

Abstract

The nonlinear dynamics of waves generated by the deformational oscillatory Marangoni instability in a two-layer film under the action of a two-dimensional temperature modulation on the solid substrate is considered. A system of long-wave equations governing the deformations of the upper surface and the interface between the liquids is presented. The long-wave approach is applied. The nonlinear simulations reveal the existence of different dynamic regimes, including stationary, time-periodic and quasi-periodic flows. The general diagrams of the flow regimes are constructed.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aranson, I. S. & Kramer, L. 2002 The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99143.Google Scholar
Bandyopadhyay, D., Gulabani, R. & Sharma, A. 2005 Instability and dynamics of thin liquid bilayers. Ind. Engng Chem. Res. 44, 12591272.Google Scholar
Chen, M. M. & Whitehead, J. A. 1968 Evolution of two-dimensional periodic Rayleigh convection cells of arbitrary wave-numbers. J. Fluid Mech. 31, 115.Google Scholar
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 8511112.Google Scholar
Danov, K. D., Alleborn, N., Raszillier, H. & Durst, F. 1998a The stability of evaporating thin liquid films in the presence of surfactant. I. Lubrication approximation and linear analysis. Phys. Fluids 10, 131143.Google Scholar
Danov, K. D., Paunov, V. N., Alleborn, N., Raszillier, H. & Durst, F 1998b Stability of evaporating two-layered liquid film in the presence of surfactant. I. The equations of lubrication approximation. Chem. Engng Sci. 53, 28092822.Google Scholar
Danov, K. D., Paunov, V. N., Stoyanov, S. D., Alleborn, N., Raszillier, H. & Durst, F. 1998c Stability of evaporating two-layered liquid film in the presence of surfactant: II. Linear analysis. Chem. Engng Sci. 53, 28232837.Google Scholar
Fisher, L. S. & Golovin, A. A. 2005 Nonlinear stability analysis of a two-layer thin liquid film: dewetting and autophobic behavior. J. Colloid Interface Sci. 291, 515528.Google Scholar
Freund, G., Pesch, W. & Zimmermann, W. 2011 Rayleigh–Bénard convection in the presence of spatial temperature modulation. J. Fluid Mech. 673, 318348.Google Scholar
Géoris, Ph., Hennenberg, M., Lebon, G. & Legros, J. C. 1999 Investigation of thermocapillary convection in a three-liquid-layer systems. J. Fluid Mech. 389, 209228.Google Scholar
Gershuni, G. Z. & Zhukhovitsky, E. M. 1976 Convective Stability of Incompressible Fluid. Keter.Google Scholar
Golovin, A. A., Nepomnyashchy, A. A. & Pismen, L. M. 1994 Interaction between short-scale Marangoni convection and long-scale deformational instability. Phys. Fluids 6, 3448.CrossRefGoogle Scholar
Liu, Q. S., Zhou, B. H., Nguyen Thi, H. & Hu, W. R. 2004 Instability of two-layer Rayleigh Bénard convection with interfacial thermocapillary effect. Chin. Phys. Lett. 21, 686688.Google Scholar
Liu, R. & Kabov, O. A. 2013 Effect of mutual location and the shape of heaters on the stability of thin films flowing over locally heated surfaces. Intl J. Heat Mass Transfer 65, 2332.Google Scholar
Nepomnyashchy, A. A. & Abarzhi, S. I. 2010 Monochromatic waves induced by large-scale parametric forcing. Phys. Rev. E 81, 037202.Google Scholar
Nepomnyashchy, A. A. & Shklyaev, S. 2016 Longwave oscillatory patterns in liquids: outside the world of the complex Ginzburg–Landau equation. J. Phys. A: Math. Gen. 49, 053001.CrossRefGoogle Scholar
Nepomnyashchy, A. A. & Simanovskii, I. B. 2006 Decomposition of a two-layer thin liquid film flowing under the action of Marangoni stresses. Phys. Fluids 18, 112101.Google Scholar
Nepomnyashchy, A. A. & Simanovskii, I. B. 2007 Marangoni instability in ultrathin two-layer films. Phys. Fluids 19, 112103.Google Scholar
Nepomnyashchy, A. A. & Simanovskii, I. B. 2012 Nonlinear Marangoni waves in a two-layer film in the presence of gravity. Phys. Fluids 24, 032101.Google Scholar
Nepomnyashchy, A. A. & Simanovskii, I. B. 2016 Marangoni waves in two-layer films under the action of spatial temperature modulation. J. Fluid Mech. 805, 322354.Google Scholar
Nepomnyashchy, A. A. & Simanovskii, I. B. 2017 Novel criteria for the development of monotonic and oscillatory instabilities in a two-layer film. Phys. Fluids 29, 092104.CrossRefGoogle Scholar
Nepomnyashchy, A., Simanovskii, I. & Legros, J.-C. 2012 Interfacial Convection in Multilayer Systems, 2nd edn. Springer.Google Scholar
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2004 Alternative pathways of dewetting for a thin liquid two-layer film. Phys. Rev. E 70, 025201.Google ScholarPubMed
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2005 Morphology changes in the evolution of liquid two-layer films. J. Chem. Phys. 122, 224711.Google Scholar
Smith, K. A. 1966 On convective instability induced by surface-tension gradients. J. Fluid Mech. 24, 401414.Google Scholar
Takashima, M. 1981 Surface tension driven instability in a horizontal liquid layer with a deformable free surface. J. Phys. Soc. Japan 50, 27452750.Google Scholar
Tiwari, N., Mester, Z. & Davis, J. M. 2007 Stability and transient dynamics of the thin liquid films flowing over locally heated surfaces. Phys. Rev. E 76, 056306.Google Scholar