Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T03:11:56.513Z Has data issue: false hasContentIssue false

Influence of nozzle external geometry on wavepackets in under-expanded supersonic impinging jets

Published online by Cambridge University Press:  27 October 2021

Shahram Karami*
Affiliation:
Laboratory for Turbulence Research in Aerospace & Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne3800, Australia
Julio Soria
Affiliation:
Laboratory for Turbulence Research in Aerospace & Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne3800, Australia
*
Email address for correspondence: [email protected]

Abstract

In this study, large-eddy simulations are utilised to unravel the influence of the nozzle's external geometry on upstream-travelling waves in under-expanded supersonic impinging jets. Three configurations, a thin-lipped, a thin-lipped with a sponge and an infinite-lipped nozzle are considered with the other non-dimensionalised geometrical and flow variables identical for the three cases. Spectral proper orthogonal decomposition is applied to the Mack norm, i.e. the energy norm based on the stagnation energy, to obtain the spatial modes at their corresponding frequency. The spectral decomposition of the spatial modes at optimal and suboptimal frequencies is used to isolate the wavepackets into upstream- and downstream-propagating waves based on their phase velocity. It is found that the external geometry of the nozzle has a significant influence on the first-order statistics even though the governing non-dimensional parameters are the same for all three cases. Multiple peaks emerge in the energy spectra at distinct frequencies corresponding to axisymmetric azimuthal modes for each case. The downstream-propagating wavepackets have a high amplitude at the shear layer of the three jets with the mode shapes resembling Kelvin–Helmholtz instability waves, while the upstream-travelling wavepackets exist in the three regions of the near field, shear layer and inside of the jet. The barrel shock at the nozzle exit appears as a flexible shield, which prevents upstream-travelling waves from reaching the internal region of the nozzle, where the upstream-travelling waves travel obliquely with one side of the wavefront is crawling on the reflected shock while the other side is guided by the shear layer. These latter waves can reach the nozzle lip via inside of the jet. The spectral decomposition of the spatial modes at optimal and suboptimal frequencies show that all three forms of the near field, shear layer and inside jet upstream-travelling wavepackets contribute to the receptivity process while their contributions and strength are altered by the change of the external geometry of the nozzle.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almgren, A.S., Bell, J.B., Nonaka, A. & Zingale, M. 2008 Low mach number modeling of type Ia supernovae. III. Reactions. Astrophys. J. 684 (1), 449.CrossRefGoogle Scholar
Alvi, F.S., Shih, C., Elavarasan, R., Garg, G. & Krothapalli, A. 2003 Control of supersonic impinging jet flows using supersonic microjets. AIAA J. 41 (7), 13471355.CrossRefGoogle Scholar
Amili, O., Edgington-Mitchell, D., Honnery, D. & Soria, J. 2015 a High resolution PIV measurements of an impinging underexpanded supersonic jet. In Turbulence and Shear Flow Phenomena (ed. S. Tavoularis & I. Marusic), June 30–July 3, University of Melbourne, Melbourne, Australia.Google Scholar
Amili, O., Edgington-Mitchell, D., Weightman, J., Stegeman, P., Ooi, A., Honnery, D. & Soria, J. 2015 b PIV measurement of an impinging underexpanded supersonic jet and comparison with LES. In 11th International Symposium on Particle Image Velocimetry, September 14–16, Santa Barbara, California, USA.Google Scholar
Amjad, S., Karami, S., Soria, J. & Atkinson, C.H. 2020 Assessment of three-dimensional density measurements from tomographic background-oriented schlieren (BOS). Meas. Sci. Technol. 31 (11), 114002.CrossRefGoogle Scholar
Bagheri, S., Schlatter, P., Schmid, P.J. & Henningson, D.S. 2009 Global stability of a jet in crossflow. J. Fluid Mech. 624, 3344.CrossRefGoogle Scholar
Bendat, J.S. & Piersol, A.G. 1966 Measurement and Analysis of Random Data. Wiley.Google Scholar
Bodony, D.J. 2006 Analysis of sponge zones for computational fluid mechanics. J. Comput. Phys. 212 (2), 681702.CrossRefGoogle Scholar
Bodony, D.J. & Lele, S.K. 2005 On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets. Phys. Fluids 17 (8), 085103.CrossRefGoogle Scholar
Bogey, C. & Gojon, R. 2017 Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round jets. J. Fluid Mech. 823, 562591.CrossRefGoogle Scholar
Bogey, C., Marsden, O. & Bailly, C. 2011 Large-eddy simulation of the flow and acoustic fields of a Reynolds number $10^5$ subsonic jet with tripped exit boundary layers. Phys. Fluids 23 (3), 035104.CrossRefGoogle Scholar
Brès, G., Jordan, P., Jaunet, V., Le Rallic, M., Cavalieri, A., Towne, A., Lele, S., Colonius, T. & Schmidt, O. 2018 Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. J. Fluid Mech. 851, 83124.CrossRefGoogle Scholar
Citriniti, J.H. & George, W.K. 2000 Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition. J. Fluid Mech. 418, 137166.CrossRefGoogle Scholar
Colonius, T. & Lele, S.K. 2004 Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40 (6), 345416.CrossRefGoogle Scholar
Colonius, T., Lele, S.K. & Moin, P. 1997 Sound generation in a mixing layer. J. Fluid Mech. 330, 375409.CrossRefGoogle Scholar
Dauptain, A., Cuenot, B. & Gicquel, L.Y.M. 2010 Large eddy simulation of stable supersonic jet impinging on flat plate. AIAA J. 48 (10), 23252338.CrossRefGoogle Scholar
Dauptain, A., Gicquel, L.Y.M. & Moreau, S. 2012 Large eddy simulation of supersonic impinging jets. AIAA J. 50 (7), 15601574.CrossRefGoogle Scholar
Davidson, L. 2009 Large eddy simulations: how to evaluate resolution. Intl J. Heat Fluid Flow 30 (5), 10161025.CrossRefGoogle Scholar
Delville, J., Ukeiley, L., Cordier, L., Bonnet, J.-P. & Glauser, M. 1999 Examination of large-scale structures in a turbulent plane mixing layer. Part 1. Proper orthogonal decomposition. J. Fluid Mech. 391, 91122.CrossRefGoogle Scholar
Donaldson, C. & Snedeker, R.S. 1971 A study of free jet impingement. Part 1. Mean properties of free and impinging jets. J. Fluid Mech. 45 (2), 281319.CrossRefGoogle Scholar
Edgington-Mitchell, D. 2019 Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets–a review. Intl J. Aeroacoust. 18 (2–3), 118188.CrossRefGoogle Scholar
Edgington-Mitchell, D., Honnery, D.R. & Soria, J. 2014 The underexpanded jet mach disk and its associated shear layer. Phys. Fluids 26 (9), 1578.CrossRefGoogle Scholar
Edgington-Mitchell, D., Jaunet, V., Jordan, P., Towne, A., Soria, J. & Honnery, D. 2018 Upstream-travelling acoustic jet modes as a closure mechanism for screech. J. Fluid Mech. 855, R1.CrossRefGoogle Scholar
Edgington-Mitchell, D., Wang, T., Nogueira, P., Schmidt, O., Jaunet, V., Duke, D., Jordan, P. & Towne, A. 2021 Waves in screeching jets. J. Fluid Mech. 913, A7.CrossRefGoogle Scholar
Freund, J. & Colonius, T. 2002 POD analysis of sound generation by a turbulent jet. In 40th AIAA Aerospace Sciences Meeting and Exhibit 2002. AIAA.CrossRefGoogle Scholar
Fukagata, K. & Kasagi, N. 2002 Highly energy-conservative finite difference method for the cylindrical coordinate system. J. Comput. Phys. 181 (2), 478498.CrossRefGoogle Scholar
Gaitonde, D.V. & Samimy, M. 2011 Coherent structures in plasma-actuator controlled supersonic jets: axisymmetric and mixed azimuthal modes. Phys. Fluids 23 (9), 095104.CrossRefGoogle Scholar
Glauser, M.N., Leib, S.J. & George, W.K. 1987 Coherent structures in the axisymmetric turbulent jet mixing layer. In Turbulent Shear Flows 5 (ed. F. Durst, et al.), pp. 134–145. Springer.CrossRefGoogle Scholar
Gojon, R. & Bogey, C. 2017 Flow structure oscillations and tone production in underexpanded impinging round jets. AIAA J. 55 (6), 17921805.CrossRefGoogle Scholar
Gojon, R., Bogey, C. & Marsden, O. 2015 Large-eddy simulation of underexpanded round jets impinging on a flat plate 4 to 9 radii downstream from the nozzle. AIAA Paper 2015-2210.Google Scholar
Gojon, R., Bogey, C. & Marsden, O. 2016 Investigation of tone generation in ideally expanded supersonic planar impinging jets using large-eddy simulation. J. Fluid Mech. 808, 90115.CrossRefGoogle Scholar
Gordeyev, S.V. & Thomas, F.O. 2000 Coherent structure in the turbulent planar jet. Part 1. Extraction of proper orthogonal decomposition eigenmodes and their self-similarity. J. Fluid Mech. 414, 145194.CrossRefGoogle Scholar
Haghiri, A., Talei, M., Brear, M.J. & Hawkes, E.R. 2018 Sound generation by turbulent premixed flames. J. Fluid Mech. 843, 2952.CrossRefGoogle Scholar
Hanifi, A., Schmid, P.J. & Henningson, D.S. 1996 Transient growth in compressible boundary layer flow. Phys. Fluids 8 (3), 826837.CrossRefGoogle Scholar
Hellström, L.H.O. & Smits, A.J. 2014 The energetic motions in turbulent pipe flow. Phys. Fluids 26 (12), 125102.CrossRefGoogle Scholar
Henderson, L.F. 1966 Experiments on the impingement of a supersonic jet on a flat plate. Z. Angew. Math. Phys. 17 (5), 553569.CrossRefGoogle Scholar
Ho, C.-M. & Nosseir, N.S. 1981 Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 105, 119142.CrossRefGoogle Scholar
Karami, S., Edgington-Mitchell, D. & Soria, J. 2018 a Large eddy simulation of supersonic under-expanded jets impinging on a flat plate. In Proceedings of the 11th Australasian Heat and Mass Transfer Conference, p. 12. Australasian Fluid and Thermal Engineering Society (AFTES).Google Scholar
Karami, S., Edgington-Mitchell, D., Theofilis, V. & Soria, J. 2020 a Characteristics of acoustic and hydrodynamic waves in under-expanded supersonic impinging jets. J. Fluid Mech. 905, A34.CrossRefGoogle Scholar
Karami, S. & Soria, J. 2018 Analysis of coherent structures in an under-expanded supersonic impinging jet using spectral proper orthogonal decomposition (SPOD). Aerospace 5 (3), 73.CrossRefGoogle Scholar
Karami, S., Stegeman, P.C., Ooi, A. & Soria, J. 2019 High-order accurate large-eddy simulations of compressible viscous flow in cylindrical coordinates. Comput. Fluids 191, 104241.CrossRefGoogle Scholar
Karami, S., Stegeman, P.C., Ooi, A., Theofilis, V. & Soria, J. 2020 b Receptivity characteristics of under-expanded supersonic impinging jets. J. Fluid Mech. 889, A27.CrossRefGoogle Scholar
Karami, S., Stegeman, P.C., Theofilis, V., Schmid, P.J. & Soria, J. 2018 b Linearised dynamics and non-modal instability analysis of an impinging under-expanded supersonic jet. In Journal of Physics: Conference Series, vol. 1001, p. 012019. IOP Publishing.CrossRefGoogle Scholar
Kawai, S. & Lele, S.K. 2010 Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J. 48 (9), 20632083.CrossRefGoogle Scholar
Kennedy, C.A. & Carpenter, M.H. 1994 Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Maths 14 (4), 397433.CrossRefGoogle Scholar
Kennedy, C.A., Carpenter, M.H. & Lewis, R.M. 2000 Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Maths 35 (3), 177219.CrossRefGoogle Scholar
Kostas, J., Soria, J. & Chong, M.S. 2005 A comparison between snapshot POD analysis of PIV velocity and vorticity data. Exp. Fluids 38 (2), 146160.CrossRefGoogle Scholar
Krothapalli, A., Rajkuperan, E., Alvi, F. & Lourenco, L. 1999 a Flow field and noise characteristics of a supersonic impinging jet. J. Fluid Mech. 392, 155181.CrossRefGoogle Scholar
Krothapalli, A., Rajkuperan, E., Alvi, F. & Lourenco, L. 1999 b Flow field and noise characteristics of a supersonic impinging jet. In 4th AIAA/CEAS Aeroacoustics Conference, p. 2239. AIAA.CrossRefGoogle Scholar
Kumar, R., Lazic, S. & Alvi, F.S. 2009 Control of high-temperature supersonic impinging jets using microjets. AIAA J. 47 (12), 28002811.CrossRefGoogle Scholar
Le Clainche, S. & Vega, J.M. 2017 Higher order dynamic mode decomposition to identify and extrapolate flow patterns. Phys. Fluids 29 (8), 084102.CrossRefGoogle Scholar
Le Clainche, S., Vega, J.M. & Soria, J. 2017 Higher order dynamic mode decomposition of noisy experimental data: the flow structure of a zero-net-mass-flux jet. Expl Therm. Fluid Sci. 88, 336353.CrossRefGoogle Scholar
Lilly, D.K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A: Fluid Dyn. 4 (3), 633635.CrossRefGoogle Scholar
Livermore, P.W., Jones, C.A. & Worland, S.J. 2007 Spectral radial basis functions for full sphere computations. J. Comput. Phys. 227 (2), 12091224.CrossRefGoogle Scholar
Lumley, J.L. 1967 The structure of inhomogeneous turbulent flows. Atmos. Turbul. Radio Wave Propag. 166–177.Google Scholar
Lumley, J.L. 1981 Coherent structures in turbulence. In Transition and Turbulence (ed. R.E. Meyer), pp. 215–242. Academic Press.CrossRefGoogle Scholar
Lumley, J.L. 1970 Stochastic Tools in Turbulence. Academic Press, New York.Google Scholar
Mack, L.M. 1984 Boundary-layer linear stability theory. Tech. Rep. ADP004046. California Inst of Tech Pasadena Jet Propulsion Lab.Google Scholar
Milani, P.M., Ching, D.S., Banko, A.J. & Eaton, J.K. 2020 Shear layer of inclined jets in crossflow studied with spectral proper orthogonal decomposition and spectral transfer entropy. Intl J. Heat Mass Transfer 147, 118972.CrossRefGoogle Scholar
Mohseni, K. & Colonius, T. 2000 Numerical treatment of polar coordinate singularities. J. Comput. Phys. 157 (2), 787795.CrossRefGoogle Scholar
Morinishi, Y., Vasilyev, O.V. & Ogi, T. 2004 Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations. J. Comput. Phys. 197 (2), 686710.CrossRefGoogle Scholar
Norum, T.D. 1983 Screech suppression in supersonic jets. AIAA J. 21 (2), 235240.CrossRefGoogle Scholar
Paredes, P., Gosse, R., Theofilis, V. & Kimmel, R. 2016 Linear modal instabilities of hypersonic flow over an elliptic cone. J. Fluid Mech. 804, 442466.CrossRefGoogle Scholar
Pelmard, J., Norris, S. & Friedrich, H. 2018 Les grid resolution requirements for the modelling of gravity currents. Comput. Fluids 174, 256270.CrossRefGoogle Scholar
Poldervaart, L.J. & Wijnands, A. 1974 Modes of vibration of an under-expanded free jet. https://www.youtube.com/watch?v=EnlCDOQW7wc.Google Scholar
Powell, A. 1953 On the mechanism of choked jet noise. Proc. Phys. Soc. B 66 (12), 1039.CrossRefGoogle Scholar
Powell, A. 1988 The sound-producing oscillations of round underexpanded jets impinging on normal plates. J. Acoust. Soc. Am. 83 (2), 515533.CrossRefGoogle Scholar
Prandtl, L. 1904 Über die stationären wellen in einem gasstrahl. Phys. Z. 5, 5996010.Google Scholar
Raman, G. & Srinivasan, K. 2009 The powered resonance tube: from Hartmann's discovery to current active flow control applications. Prog. Aerosp. Sci. 45 (4–5), 97123.CrossRefGoogle Scholar
Ray, P.K., Cheung, L.C. & Lele, S.K. 2009 On the growth and propagation of linear instability waves in compressible turbulent jets. Phys. Fluids 21 (5), 054106.CrossRefGoogle Scholar
Rossiter, J.E. 1964 Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Tech. Rep. Ministry of Aviation; Royal Aircraft Establishment; RAE Farnborough.Google Scholar
Rowley, C.W. 2002 Modeling, simulation, and control of cavity flow oscillations. PhD thesis, California Institute of Technology.Google Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Schmidt, O.T. & Colonius, T. 2020 Guide to spectral proper orthogonal decomposition. AIAA J. 58 (3), 10231033.CrossRefGoogle Scholar
Schmidt, O.T., Towne, A., Rigas, G., Colonius, T. & Brès, G.A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.CrossRefGoogle Scholar
Semlitsch, B., Malla, B., Gutmark, E.J. & Mihăescu, M. 2020 The generation mechanism of higher screech tone harmonics in supersonic jets. J. Fluid Mech. 893, A9.CrossRefGoogle Scholar
Sieber, M., Paschereit, C.O. & Oberleithner, K. 2016 Spectral proper orthogonal decomposition. J. Fluid Mech. 792, 798828.CrossRefGoogle Scholar
Sikroria, T., Soria, J., Karami, S., Sandberg, R.D. & Ooi, A. 2020 Measurement and analysis of the shear layer instabilities in supersonic impinging jets. In AIAA Aviation 2020 Forum, p. 3070. AIAA.CrossRefGoogle Scholar
Sirovich, L. 1987 a Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths 45 (3), 561571.CrossRefGoogle Scholar
Sirovich, L. 1987 b Turbulence and the dynamics of coherent structures. II. symmetries and transformations. Q. Appl. Maths 45 (3), 573582.CrossRefGoogle Scholar
Sirovich, L. 1987 c Turbulence and the dynamics of coherent structures. III. dynamics and scaling. Q. Appl. Maths 45 (3), 583590.CrossRefGoogle Scholar
Soria, J. & Amili, O. 2015 Under-expanded impinging supersonic jet flow. In 10th Pacific Symposium on Flow Visualization and Image Processing (ed. G. Cardone), June 15–18, Naples, Italy.Google Scholar
Stahl, S.L., Prasad, C. & Gaitonde, D.V. 2021 Distinctions between single and twin impinging jet dynamics. J. Acoust. Soc. Am. 150 (2), 734744.CrossRefGoogle ScholarPubMed
Stegeman, P.C., Pérez, J.M., Soria, J. & Theofilis, V. 2016 a Inception and evolution of coherent structures in under-expanded supersonic jets. J. Phys.: Conf. Ser. 708, 012015.Google Scholar
Stegeman, P.C., Soria, J. & Ooi, A. 2016 b Interaction of shear layer coherent structures and the stand-off shock of an under-expanded circular impinging jet. In Fluid-Structure-Sound Interactions and Control, pp. 241–245. Springer.CrossRefGoogle Scholar
Tam, C.K.W. & Ahuja, K.K. 1990 Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech. 214, 6787.CrossRefGoogle Scholar
Tam, C.K.W. & Dong, Z. 1994 Wall boundary conditions for high-order finite-difference schemes in computational aeroacoustics. Theor. Comput. Fluid Dyn. 6 (5–6), 303322.CrossRefGoogle Scholar
Thurow, B., Samimy, M. & Lempert, W. 2002 Structure of a supersonic impinging rectangular jet via real-time optical diagnostics. In 32nd AIAA Fluid Dynamics Conference and Exhibit, p. 2865. AIAA.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2017 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 825, 11131152.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Tumin, A. & Reshotko, E. 2003 Optimal disturbances in compressible boundary layers. AIAA J. 41 (12), 23572363.CrossRefGoogle Scholar
Tutkun, M. & George, W.K. 2017 Lumley decomposition of turbulent boundary layer at high Reynolds numbers. Phys. Fluids 29 (2), 020707.CrossRefGoogle Scholar
Tutkun, M., Johansson, P.B.V. & George, W.K. 2008 Three-component vectorial proper orthogonal decomposition of axisymmetric wake behind a disk. AIAA J. 46 (5), 11181134.CrossRefGoogle Scholar
Weightman, J.L., Amili, O., Honnery, D., Edgington-Mitchell, D. & Soria, J. 2017 On the effects of nozzle lip thickness on the azimuthal mode selection of a supersonic impinging flow. In 23rd AIAA/CEAS Aeroacoustics Conference, p. 3031. AIAA.CrossRefGoogle Scholar
Weightman, J.L., Amili, O., Honnery, D., Edgington-Mitchell, D. & Soria, J. 2019 Nozzle external geometry as a boundary condition for the azimuthal mode selection in an impinging underexpanded jet. J. Fluid Mech. 862, 421448.CrossRefGoogle Scholar
Wlezien, R.W. & Kibens, V. 1988 Influence of nozzle asymmetry on supersonic jets. AIAA J. 26 (1), 2733.CrossRefGoogle Scholar
Zapryagaev, V., Kiselev, N. & Gubanov, D. 2018 Shock-wave structure of supersonic jet flows. Aerospace 5 (2), 60.CrossRefGoogle Scholar

Karami and Soria supplementary movie 1

Three animations of the density gradient
Download Karami and Soria supplementary movie 1(Video)
Video 57.6 MB

Karami and Soria supplementary movie 2

Instantaneous contours of the total energy fluctuation fields of the pressure impulse simulations.

Download Karami and Soria supplementary movie 2(Video)
Video 7.4 MB