Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T11:23:53.488Z Has data issue: false hasContentIssue false

Helical self-similarity of tip vortex cores

Published online by Cambridge University Press:  28 November 2018

Valery L. Okulov*
Affiliation:
Department of Wind Energy, Technical University of Denmark, 2800 Lyngby, Denmark Kutateladze Institute of Thermophysics, SB RAS, 630090 Novosibirsk, Russia
Ivan K. Kabardin
Affiliation:
Kutateladze Institute of Thermophysics, SB RAS, 630090 Novosibirsk, Russia
Robert F. Mikkelsen
Affiliation:
Department of Wind Energy, Technical University of Denmark, 2800 Lyngby, Denmark
Igor V. Naumov
Affiliation:
Kutateladze Institute of Thermophysics, SB RAS, 630090 Novosibirsk, Russia
Jens N. Sørensen
Affiliation:
Department of Wind Energy, Technical University of Denmark, 2800 Lyngby, Denmark
*
Email address for correspondence: [email protected]

Abstract

The present work investigates local flow structures and the downstream evolution of the core of helical tip vortices generated by a three-bladed rotor. Earlier experimental studies have shown that the core of a helical tip vortex exhibits a local helical symmetry with a simple relation between the axial and azimuthal velocities. In the present study, a self-similarity scaling argument further describes the downstream development of the vortex core. Self-similarity has up to now only been investigated for longitudinal vortices and it is the first time that helical vortices have become the subject of such an analysis. Combining symmetry arguments from previous studies on helical vortices with novel experiments and knowledge regarding the self-similarity evolution of the core of longitudinal vortices, a new model describing what is referred to as ‘helical self-similarity’ is proposed. The generality of the model is verified and supported by experimental data. The proposed model is important for fundamental understanding of the behaviour of helical vortices, with a range of applications in both industry and nature. Examples of this are tip vortices behind aerodynamic devices, such as vortex generators, and fixed and rotary aircraft, and in combustion chambers and cyclone separators.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alekseenko, S. V., Kuibin, P. A. & Okulov, V. L. 2007 Theory of Concentrated Vortices: An Introduction. Springer Science & Business Media.Google Scholar
Ali, M. & Abid, M. 2014 Self-similar behaviour of a rotor wake vortex core. J. Fluid Mech. 740, R1.Google Scholar
Batchelor, G. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20 (4), 645658.Google Scholar
Dritschel, D. G. 1991 Generalized helical Beltrami flows in hydrodynamics and magnetohydrodynamics. J. Fluid Mech. 222, 525541.Google Scholar
Felli, M., Camussi, R. & Di Felice, F. 2011 Mechanisms of evolution of the propeller wake in the transition and far fields. J. Fluid Mech. 682, 553.Google Scholar
Fukumoto, Y. & Miyazaki, T. 1991 Three-dimensional distortions of a vortex filament with axial velocity. J. Fluid Mech. 222, 369416.Google Scholar
George, W. K. 2012 Asymptotic effect of initial and upstream conditions on turbulence. Trans. ASME J. Fluids Engng 134 (6), 061203.Google Scholar
Gupta, B. P. & Loewy, R. G. 1974 Theoretical analysis of the aerodynamics stability of multiple, interdigitated helical vortices. AIAA J. 12, 13811387.Google Scholar
Kuibin, P. A. & Okulov, V. L. 1996 One-dimensional solutions for a flow with a helical symmetry. Thermophys. Aeromech. 3 (4), 335339.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Landman, M. J. 1990 On the generation of helical waves in circular pipe flow. Phys. Fluids A 2, 738747.Google Scholar
Leishman, J. G. 2006 Principles of Helicopter Aerodynamics. Cambridge University Press.Google Scholar
Martemianov, S. & Okulov, V. L. 2004 On heat transfer enhancement in swirl pipe flows. Intl J. Heat Mass Transfer 47, 23792393.Google Scholar
Naumov, I. V., Mikkelsen, R. F., Okulov, V. L. & Sørensen, J. N. 2014 PIV and LDA measurements of the wake behind a wind turbine model. J. Phys.: Conf. Ser. 524 (1), 012168.Google Scholar
Naumov, I. V., Rahmanov, V. V., Okulov, V. L., Velte, C. M., Meyer, K. E. & Mikkelsen, R. F. 2012 Flow diagnostics downstream of a tribladed rotor model. Thermophys. Aeromech. 19 (2), 171181.Google Scholar
Okulov, V. L., Mikkelsen, R., Litvinov, I. V. & Naumov, I. V. 2015a Efficiency of operation of wind turbine rotors optimized by the Glauert and Betz methods. Tech. Phys. 60 (11), 16321636.Google Scholar
Okulov, V. L., Naumov, I. V., Mikkelsen, R. F., Kabardin, I. K. & Sørensen, J. N. 2014 A regular Strouhal number for large-scale instability in the far wake of a rotor. J. Fluid Mech. 747, 369380.Google Scholar
Okulov, V. L. & Sørensen, J. N. 2010 Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches. J. Fluid Mech. 649, 497508.Google Scholar
Okulov, V. L., Sørensen, J. N. & Wood, D. H. 2015b The rotor theories by Professor Joukowsky: vortex theories. Prog. Aerosp. Sci. 73, 1946.Google Scholar
Quaranta, H. U., Bolnot, H. & Leweke, T. 2015 Long-wave instability of a helical vortex. J. Fluid Mech. 780, 687716.Google Scholar
Saffman, P. G. 1992 Vortex Dynamics, p. 252. Cambridge University Press.Google Scholar
Sarmast, S., Dadfar, R., Mikkelsen, R., Schlatter, P., Ivanell, S., Sørensen, J. & Henningson, D. 2014 Mutual inductance instability of the tip vortices behind a wind turbine. J. Fluid Mech. 755, 705731.Google Scholar
Selig, M. S., Guglielmo, J. J., Broeren, A. P. & Giguere, P. 1995 Summary of Low-Speed Airfoil Data, vol. 1, p. 292. SolarTech Publicaton, Virginia Beach, VA.Google Scholar
Sørensen, J. N. 2011 Instability of helical tip vortices in rotor wakes. J. Fluid Mech. 682, 14.Google Scholar
Sørensen, J. N., Mikkelsen, R., Sarmast, S., Ivanell, S. & Henningson, D. 2014 Determination of wind turbine near-wake length based on stability analysis. J. Phys.: Conf. Ser. 524, 012155.Google Scholar
Sørensen, J. N., Okulov, V. L., Mikkelsen, R. F., Naumov, I. V. & Litvinov, I. V. 2016 Comparison of classical methods for blade design and the influence of tip correction on rotor performance. J. Phys.: Conf. Ser. 753 (2), 022020.Google Scholar
Sørensen, J. N. & Shen, W. Z. 2002 Numerical modelling of wind turbine wakes. Trans. ASME J. Fluids Engng 124 (2), 393399.Google Scholar
Van Kuik, G. A. M., Sørensen, J. N. & Okulov, V. L. 2015 Rotor theories by Professor Joukowsky: momentum theories. Prog. Aerosp. Sci. 73, 118.Google Scholar
Velte, C. M., Hansen, M. O. L. & Okulov, V. L. 2009 Helical structure of longitudinal vortices embedded in turbulent wall-bounded flow. J. Fluid Mech. 619, 167177.Google Scholar
Vermeer, L. J., Sørensen, J. N. & Crespo, A. 2003 Wind turbine wake aerodynamics. Prog. Aerosp. Sci. 39, 467510.Google Scholar
Widnall, S. E. 1972 The stability of a helical vortex filament. J. Fluid Mech. 54, 641663.Google Scholar