Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-19T12:02:57.044Z Has data issue: false hasContentIssue false

Exact second-order structure-function relationships

Published online by Cambridge University Press:  08 October 2002

REGINALD J. HILL
Affiliation:
National Oceanic and Atmospheric Administration, Environmental Technology Laboratory, Boulder, CO 80305-3328, USA

Abstract

Equations that follow from the Navier–Stokes equation and incompressibility but with no other approximations are ‘exact’. Exact equations relating second- and third- order structure functions are studied, as is an exact incompressibility condition on the second-order velocity structure function. Opportunities for investigations using these equations are discussed. Precisely defined averaging operations are required to obtain exact averaged equations. Ensemble, temporal and spatial averages are all considered because they produce different statistical equations and because they apply to theoretical purposes, experiment and numerical simulation of turbulence. Particularly simple exact equations are obtained for the following cases: (i) the trace of the structure functions, (ii) DNS that has periodic boundary conditions, and (iii) an average over a sphere in r-space. Case (iii) introduces the average over orientations of r into the structure-function equations. The energy dissipation rate ε appears in the exact trace equation without averaging, whereas in previous formulations ε appears after averaging and use of local isotropy. The trace mitigates the effect of anisotropy in the equations, thereby revealing that the trace of the third-order structure function is expected to be superior for quantifying asymptotic scaling laws. The orientation average has the same property.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)