Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-19T15:03:10.441Z Has data issue: false hasContentIssue false

Convective influence on the stability of a cylindrical solid–liquid interface

Published online by Cambridge University Press:  20 April 2006

Q. T. Fang
Affiliation:
Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12181
M. E. Glicksman
Affiliation:
Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12181
S. R. Coriell
Affiliation:
National Bureau of Standards, Washington, D.C. 20234
G. B. McFadden
Affiliation:
National Bureau of Standards, Washington, D.C. 20234
R. F. Boisvert
Affiliation:
National Bureau of Standards, Washington, D.C. 20234

Abstract

Experiments in which a long vertical, heated wire is surrounded by concentric annuli of a melt and its crystalline solid show that the convection state changes from a stable unicell surrounded by a stationary cylindrical solid–liquid interface, to a complex time-dependent flow surrounded by a rotating, helical solid–liquid interface. This transition occurs at a Grashof number of approximately 150, which is an order of magnitude less than the critical Grashof number calculated for a liquid annulus surrounded by rigid walls. A linear stability analysis has been carried out for an infinitely tall vertical annulus. When the deformable nature of the crystal–melt interface is taken into account in the boundary conditions, two new modes of instability arise. The most dangerous mode is asymmetrical and corresponds to helical waves travelling vertically upwards. The critical Grashof number and the scaling properties of the eigenstate agree with experiments. The results clearly demonstrate the coupling of convection with crystal–melt interfacial instabilities.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carruthers J. R.1977 In Preparation and Properties of Solid State Materials, vol. 3 (ed. W. R. Wilcox & R. A. Lefever), p. 1. Dekker.
Choi, I. G. & Korpela S. A.1980 J. Fluid Mech. 99, 725.
Coriell S. R., Boisvert R. F., Mickalonis, J. I. & Glicksman M. E.1983 Adv. Space Res. (Proc. 24th COSPAR Meeting) 3, 95.
Coriell S. R., Cordes M. R., Boettinger, W. J. & Sekerka R. F.1980 J. Crystal Growth 49, 13.
Coriell, S. R. & Sekerka R. F.1981 Physico-Chem. Hydrodyn. 2, 281.
Delves R. T.1974 In Crystal Growth, vol. 1 (ed. B. R. Pamplin), p. 40. Pergamon.
Drazin, P. G. & Reid W. H.1981 Hydrodynamic Stability. Cambridge University Press.
Fang Q. T.1983 M. S. thesis, Materials Engineering Department, Rensselaer Polytechnic Institute.
Garg V. K.1981 J. Fluid Mech. 110, 209.
Glicksman, M. E. & Mickalonis J. I.1982 In Proc. 16th Southeastern Seminar on Thermal Science, Miami, Florida, vol. 1, p. 505.
Glicksman M. E., Schaefer, R. J. & Ayers J. D.1976 Metall. Trans. 7A, 1747.
Hurle D. T. J.1977 In Current Topics in Materials Science, vol. 2 (ed. E. Kaldis & H. J. Scheel), p. 549. North-Holland.
Langer J. S.1980 Rev. Mod. Phys. 52, 1.
Mickalonis J. I.1982 M.S. thesis, Materials Engineering Department, Rensselaer Polytechnic Institute.
Mullins W. W.1963 In Metal Surfaces, chap. 2. Am. Soc. Metals, Metal Park, Ohio.
Pimputkar, S. M. & Ostrach S.1981 J. Crystal Growth 55, 614.
Powell M. J. D.1970 In Numerical Methods for Nonlinear Algebraic Equations (ed. P. Rabinowitz). Gordon & Breach.
Schaefer R. J., Glicksman, M. E. & Ayers J. D.1975 Phil. Mag. 32, 725.
Scott, M. R. & Watts H. A.1977 SIAM J. Numer. Anal. 14, 40.
Shaaban, A. H. & Özisik M. N.1982 In Proc. 7th Intl Heat Transfer Conf., Munich, vol. 2, p. 281.
Wollkind D. J.1979 In Preparation and Properties of Solid State Materials, vol. 4 (ed. W. R. Wilcox), p. 111. Dekker.