Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T16:16:05.389Z Has data issue: false hasContentIssue false

Control of confined vortex breakdown with partial rotating lids

Published online by Cambridge University Press:  29 November 2013

L. Mununga
Affiliation:
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University, Melbourne, Victoria 3800, Australia
D. Lo Jacono
Affiliation:
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University, Melbourne, Victoria 3800, Australia
J. N. Sørensen
Affiliation:
Department of Mechanical Engineering, Technical University of Denmark, Lyngby, DK-2800, Denmark
T. Leweke
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre (IRPHÉ), UMR 6594 CNRS / Universités Aix-Marseille I & II, 49 rue Frédéric Joliot-Curie, B.P. 146, F-13384 Marseille CEDEX 13, France
M. C. Thompson*
Affiliation:
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University, Melbourne, Victoria 3800, Australia Division of Biological Engineering, Monash University, Melbourne, Victoria 3800, Australia
K. Hourigan
Affiliation:
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University, Melbourne, Victoria 3800, Australia Division of Biological Engineering, Monash University, Melbourne, Victoria 3800, Australia
*
Email address for correspondence: [email protected]

Abstract

Experiments were conducted to determine the effectiveness of controlling vortex breakdown in a confined cylindrical vessel using a small rotating disk, which was flush-mounted into the opposite endwall to the rotating endwall driving the primary recirculating flow. The results show that the control disk, with relatively little power input, can modify the azimuthal and axial flow significantly, changing the entire flow structure in the cylinder. Co-rotation was found to precipitate vortex breakdown onset whereas counter-rotation delays it. Furthermore, for the Reynolds-number range over which breakdown normally exists, co-rotation increases the bubble radial and axial dimensions, while shifting the bubble in the upstream direction. By contrast, counter-rotation tends to reduce the size of the bubble, or completely suppress it, while shifting the bubble in the downstream direction. These effects are amplified substantially by the use of larger control disks and higher rotation ratios. A series of numerical simulations close to the onset Reynolds number reveals that the control disk acts to generate a rotation-rate-invariant local positive or negative azimuthal vorticity source away from the immediate vicinity of the control disk but upstream of breakdown. Advection of this source along streamlines modifies the strength of the azimuthal vorticity ring, which effectively controls whether the flow reverses on the axis, and thus, in turn, whether vortex breakdown occurs. The vorticity source generated by the control disk scales approximately linearly with rotation ratio and cubically with disk diameter; this allows the observed variation of the critical Reynolds number to be approximately predicted.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14, 593629.CrossRefGoogle Scholar
Bhattacharyya, S. & Pal, A. 1998 Axisymmetric vortex breakdown in a filled cylinder. Intl J. Engng Sci. 36, 555563.CrossRefGoogle Scholar
Bhattacharyya, S. & Pal, A. 1999 Generation (or degeneration) of a separation bubble in a liquid-filled cylinder through spin-up (or spin-down) process. Trans. ASME: J. Appl. Mech. 66 (4), 10231026.CrossRefGoogle Scholar
Billant, P., Chomaz, J. M. & Huerre, P. 1998 Experimental study of vortex breakdown in swirling jets. J. Fluid Mech. 376, 183219.CrossRefGoogle Scholar
Brøns, M., Shen, W. Z. & Sørensen, J. N. 2007 The influence of imperfections on the flow structure of steady vortex breakdown bubbles. J. Fluid Mech. 578, 453466.CrossRefGoogle Scholar
Brøns, M., Thompson, M. C. & Hourigan, K. 2009 Dye visualization near a three-dimensional stagnation point: application to the vortex breakdown bubble. J. Fluid Mech. 622, 177194.CrossRefGoogle Scholar
Brown, G. L. & Lopez, J. M. 1990 Axisymmetric vortex breakdown. Part 2. Physical mechanisms. J. Fluid Mech. 221, 553576.CrossRefGoogle Scholar
Cabeza, C., Sarasua, G., Marti, A. C., Bove, I., Varela, S., Usera, G. & Vernet, A. 2010 Influence of coaxial cylinders on the vortex breakdown in a closed flow. Eur. J. Mech. (B/Fluids) 29 (3), 201207.CrossRefGoogle Scholar
Dusting, J., Sheridan, J. & Hourigan, K. 2006 A fluid dynamics approach to bioreactor design for cell and tissue culture. Biotechnol. Bioengng 94 (6), 11961208.CrossRefGoogle ScholarPubMed
Escudier, M. P. 1984 Observations of the flow produced in a cylindrical container by a rotating endwall. Exp. Fluids 2, 189196.CrossRefGoogle Scholar
Fujimura, K., Koyama, H. S. & Hyun, J. M. 1997 Time-dependent vortex breakdown in a cylinder with a rotating lid. Trans. ASME: J. Fluids Engng 119 (2), 450453.Google Scholar
Fujimura, K., Koyama, H. S. & Hyun, J. M. 2004 An experimental study on vortex breakdown in a differentially-rotating cylindrical container. Exp. Fluids 36, 399407.CrossRefGoogle Scholar
Griffith, M. D., Leweke, T., Thompson, M. C. & Hourigan, K. 2009 Pulsatile flow in stenotic geometries: flow behaviour and stability. J. Fluid Mech. 622, 291320.CrossRefGoogle Scholar
Herrada, M. A. & Shtern, V. 2003a Control of vortex breakdown by temperature gradients. Phys. Fluids 15, 34683477.CrossRefGoogle Scholar
Herrada, M. A. & Shtern, V. 2003b Vortex breakdown control by adding near-axis swirl and temperature gradients. Phys. Rev. E 68 (41), 20212028.CrossRefGoogle ScholarPubMed
Hourigan, K., Graham, L. W. & Thompson, M. C. 1995 Spiral streaklines in pre-vortex breakdown regions of axisymmetric swirling flows. Phys. Fluids 7 (12), 31263128.CrossRefGoogle Scholar
Husain, H. S., Shtern, V. & Hussain, F. 2003 Control of vortex breakdown by addition of near-axis swirl. Phys. Fluids 15, 271279.CrossRefGoogle Scholar
Ismadi, M.-Z. P., Meunier, P., Fouras, A. & Hourigan, K. 2011 Experimental control of vortex breakdown by density effects. Phys. Fluids 23 (3), 034104.CrossRefGoogle Scholar
Karniadakis, G. E. & Sherwin, S. J. 1999 Spectral/hp Element Methods for CFD, 1st edn. Oxford University Press.Google Scholar
Keller, J. J., Egli, W. & Exley, J. 1985 Force- and loss-free transitions between flow states. Z. Angew. Math. Phys. 36, 854889.CrossRefGoogle Scholar
Leweke, T., Thompson, M. C. & Hourigan, K. 2004 Vortex dynamics associated with the impact of a sphere with a wall. Phys. Fluids 16 (9), L74L77.CrossRefGoogle Scholar
Liow, K. Y. S., Tan, B. T., Thouas, G. & Thompson, M. C. 2009 CFD modelling of the steady-state momentum and oxygen transport in a bioreactor that is driven by a rotating disk. Mod. Phys. Lett. B 23 (2), 121127.CrossRefGoogle Scholar
Lo Jacono, D., Sørensen, J. N., Thompson, M. C. & Hourigan, K. 2008 Control of vortex breakdown in a closed cylinder with a small rotating rod. J. Fluids Struct. 24 (8), 12781283.CrossRefGoogle Scholar
Lopez, J. M., Cui, Y. D., Marques, F. & Lim, T. T. 2008 Quenching of vortex breakdown oscillations via harmonic modulation. J. Fluid Mech. 599, 441464.CrossRefGoogle Scholar
Meunier, P. & Hourigan, K. 2013 Mixing in a vortex breakdown flow. J. Fluid Mech. 731, 195222.CrossRefGoogle Scholar
Mununga, L. 2005 Confined flow vortex breakdown study and modelling of mixing in a stirred vessel. PhD thesis, Department of Mechanical Engineering, Monash University, Melbourne, Australia.Google Scholar
Mununga, L., Hourigan, K., Thompson, M. C. & Leweke, T. 2004 Confined flow vortex breakdown control using a small disk. Phys. Fluids 16 (12), 47504753.CrossRefGoogle Scholar
Okulov, V. L., Sørensen, J. N. & Voigt, L. K. 2004 Vortex scenario and bubble generation in a cylinder cavity with rotating top and bottom. Eur. J. Mech. (B/Fluids) 24, 137148.CrossRefGoogle Scholar
Piva, M. & Meiburg, E. 2005 Steady axisymmetric flow in an open cylindrical container with a partially rotating bottom wall. Phys. Fluids 17 (6), 063603.CrossRefGoogle Scholar
Roesner, K. G. 1990 Recirculating zones in a cylinder with rotating lid. Eur. J. Mech. (B/Fluids) 24, 137148.Google Scholar
Ronnenberg, B. 1977 Ein selbstjustierendes 3-Komponenten-Laserdoppleranemometer nach dem Vergleichsstrahlverfahren, angewandt für Untersuchungen in einer stationären zylindersymmetrischen Drehströmung mit einem Rückströmgebiet. Tech. Rep., Max-Planck-Institut für Strömungsforschung.Google Scholar
Shtern, V. N., del Mar Torregrosa, M. & Herrada, M. A. 2012 Effect of swirl decay on vortex breakdown in a confined steady axisymmetric flow. Phys. Fluids 24, 043601.CrossRefGoogle Scholar
Spall, R. E., Gatski, T. B. & Gresch, C. E. 1987 A criterion for vortex breakdown. Phys. Fluids 30, 34343440.CrossRefGoogle Scholar
Squire, H. B. 1960 Analysis of the ‘vortex-breakdown’ phenomenon. Part 1. Imperial College, Aero Department Report 102.Google Scholar
Tan, B. T., Liow, K. Y. S., Mununga, L., Thompson, M. C. & Hourigan, K. 2009 Simulation of the control of vortex breakdown in a closed cylinder using a small rotating disk. Phys. Fluids 21 (2), 024104.CrossRefGoogle Scholar
Thompson, M. C., Leweke, T. & Hourigan, K. 2007 Sphere–wall collision: vortex dynamics and stability. J. Fluid Mech. 575, 121148.CrossRefGoogle Scholar
Thompson, M. C. & Hourigan, K. 2003 The sensitivity of steady vortex breakdown bubbles in confined cylinder flows to rotating lid misalignment. J. Fluid Mech. 496, 129138.CrossRefGoogle Scholar
Thompson, M. C., Hourigan, K., Cheung, A. & Leweke, T. 2006 Hydrodynamics of a particle impact on a wall. Appl. Math. Model. 30 (11), 13561369.CrossRefGoogle Scholar
Thompson, M. C., Hourigan, K. & Sheridan, J. 1996 Three-dimensional instabilities in the wake of a circular cylinder. Exp. Therm. Fluid Sci. 12, 190196.CrossRefGoogle Scholar
Thouas, G. A., Sheridan, J. & Hourigan, K. 2007 A bioreactor model of mouse tumor progression. J. Biomed. Biotechnol. 9, 32754.Google Scholar
Valentine, D. T. & Jahnke, C. C. 1994 Flows induced in a cylinder with both end walls rotating. Phys. Fluids 16, 27022710.CrossRefGoogle Scholar
Ventikos, Y. 2002 The effect of imperfections on the emergence of three-dimensionality in stationary vortex breakdown bubbles. Phys. Fluids 14 (3), L13L16.CrossRefGoogle Scholar
Vogel, H. U. 1968 Experimentelle Ergebnisse über die laminare Strömung in einem zylindrischen Gehäuse mit darin rotierender Scheibe. Tech. Rep., Max-Planck Institute.Google Scholar
Yu, P., Lee, T. S., Zeng, Y. & Low, H. T. 2005a Effect of vortex breakdown on mass transfer in a cell culture bioreactor. Mod. Phys. Lett. B 19, 1543.CrossRefGoogle Scholar
Yu, P., Lee, T. S., Zeng, Y. & Low, H. T. 2005b Fluid dynamics of a micro-bioreactor for tissue engineering. Fluid Dyn. Mater. Proc. 1, 235.Google Scholar
Yu, P., Lee, T. S., Zeng, Y. & Low, H. T. 2006 Effects of conical lids on vortex breakdown in an enclosed cylindrical chamber. Phys. Fluids 18, 117101.CrossRefGoogle Scholar
Yu, P., Lee, T. S., Zeng, Y. & Low, H. T. 2007 Characterization of flow behaviour in an enclosed cylinder with a partially rotating end wall. Phys. Fluids 19 (5), 057104.CrossRefGoogle Scholar
Yu, P., Lee, T. S., Zeng, Y. & Low, H. T. 2009 Fluid dynamics and oxygen transport in a micro-bioreactor with a tissue engineering scaffold. Intl J. Heat Mass Transfer 52, 316327.CrossRefGoogle Scholar