Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T18:48:24.788Z Has data issue: false hasContentIssue false

Consistent shallow-water equations on the rotating sphere with complete Coriolis force and topography

Published online by Cambridge University Press:  08 May 2014

Marine Tort
Affiliation:
Laboratoire de Météorologie Dynamique, Univ. P. and M. Curie, Ecole Normale Supérieure and Ecole Polytechnique, Palaiseau, 91120, France
Thomas Dubos
Affiliation:
Laboratoire de Météorologie Dynamique, Univ. P. and M. Curie, Ecole Normale Supérieure and Ecole Polytechnique, Palaiseau, 91120, France
François Bouchut
Affiliation:
Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050), CNRS, UPEMLV, UPEC, F-77454, Marne-la-Vallée, France
Vladimir Zeitlin*
Affiliation:
Laboratoire de Météorologie Dynamique, Univ. P. and M. Curie, Ecole Normale Supérieure and Ecole Polytechnique, Palaiseau, 91120, France Institut Universitaire de France, France
*
Email address for correspondence: [email protected]

Abstract

Consistent shallow-water equations are derived on the rotating sphere with topography retaining the Coriolis force due to the horizontal component of the planetary angular velocity. Unlike the traditional approximation, this ‘non-traditional’ approximation captures the increase with height of the solid-body velocity due to planetary rotation. The conservation of energy, angular momentum and potential vorticity are ensured in the system. The caveats in extending the standard shallow-water wisdom to the case of the rotating sphere are exposed. Different derivations of the model are possible, being based, respectively, on (i) Hamilton’s principle for primitive equations with a complete Coriolis force, under the hypothesis of columnar motion, (ii) straightforward vertical averaging of the ‘non-traditional’ primitive equations, and (iii) a time-dependent change of independent variables in the primitive equations written in the curl (‘vector-invariant’) form, with subsequent application of the columnar motion hypothesis. An intrinsic, coordinate-independent form of the non-traditional equations on the sphere is then given, and used to derive hyperbolicity criteria and Rankine–Hugoniot conditions for weak solutions. The relevance of the model for the Earth’s atmosphere and oceans, as well as other planets, is discussed.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bleck, R. 2002 An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Model. 4 (1), 5588.Google Scholar
Colin-de Verdiere, A. 2012 The stability of short symmetric internal waves on sloping fronts: beyond the traditional approximation. J. Phys. Oceanogr. 42 (3), 459475.Google Scholar
Dellar, P. J. 2011 Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton’s principle on a sphere. J. Fluid Mech. 674, 174195.Google Scholar
Dellar, P. J. & Salmon, R. 2005 Shallow water equations with a complete Coriolis force and topography. Phys. Fluids 17 (10), 106601.Google Scholar
Eckart, C. 1960 Hydrodynamics of Oceans and Atmospheres. Pergamon Press.Google Scholar
Gates, W. L. 2004 Derivation of the equations of atmospheric motion in oblate spheroidal coordinates. J. Atmos. Sci. 61, 24782487.Google Scholar
Gerkema, T. & Shrira, V. I. 2005 Near-inertial waves in the ocean: beyond the traditional approximation. J. Fluid Mech. 529, 195219.Google Scholar
Gerkema, T., Zimmerman, J. T. F., Maas, L. R. M. & van Haren, H. 2008 Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys. 46 (2), RG2004.Google Scholar
Grimshaw, R. H. J. 1975 A note on the beta-plane approximation. Tellus 27 (4), 351357.Google Scholar
Hayashi, M. & Itoh, H. 2012 The importance of the nontraditional Coriolis terms in large-scale motions in the tropics forced by prescribed cumulus heating. J. Atmos. Sci. 69 (9), 26992716.Google Scholar
Holm, D. D. & Zeitlin, V. 1998 Hamilton’s principle for quasigeostrophic motion. Phys. Fluids 10 (4), 800806.Google Scholar
Korn, G. A. & Korn, T. M. 2000 Mathematical Handbook for Scientists and Engineers. Dover.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1976 Mechanics. Pergamon Press.Google Scholar
Lin, S. J. 2004 A vertically Lagrangian finite-volume dynamical core for global models. Mon. Weath. Rev. 132 (10), 22932307.Google Scholar
Pedlosky, J. 1979 Geophysical Fluid Dynamics. Springer.Google Scholar
Phillips, N. A. 1966 The equations of motion for a shallow rotating atmosphere and the ‘traditional approximation’. J. Atmos. Sci. 23 (5), 626628.Google Scholar
Raymond, W. H. 2000 Equatorial meridional flows: rotationally induced circulations. Pure Appl. Geophys. 157 (10), 17671779.Google Scholar
Reznik, G. M., Zeitlin, V. & BenJelloul, M. 2001 Nonlinear theory of the geostrophic adjustment. Part 1. Rotating shallow water model. J. Fluid Mech. 445, 93120.Google Scholar
Ripa, P. 1993 Conservation laws for primitive equations models with inhomogeneous layers. Geophys. Astrophys. Fluid Dyn. 70 (1–4), 85111.Google Scholar
Salmon, R. 1988 Hamiltonian fluid dynamics. Annu. Rev. Fluid Mech. 20, 225256.Google Scholar
Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press.Google Scholar
Scott, R. K. & Polvani, L. M. 2007 Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci. 64, 31583176.Google Scholar
Stewart, A. L. & Dellar, P. J. 2011 Cross-equatorial flow through an abyssal channel under the complete Coriolis force: two-dimensional solutions. Ocean Model.Google Scholar
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press.Google Scholar
White, A. A. & Bromley, R. A. 1995 Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Q. J. R. Meteorol. Soc. 121 (522), 399418.Google Scholar
White, A. A., Hoskins, B. J., Roulstone, I. & Staniforth, A. 2005 Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Q. J. R. Meteorol. Soc. 131, 20812107.Google Scholar
White, A. A. & Wood, N. 2012 Consistent approximate models of the global atmosphere in non-spherical geopotential coordinates. Q. J. R. Meteorol. Soc. 138 (665), 980988.Google Scholar
Williamson, D., Drake, J., Hack, J., Jakob, R. & Swarztrauber, P. 1992 A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102 (1), 211224.Google Scholar
Zeitlin, V. 2007 Introduction: fundamentals of rotating shallow water model in the geophysical fluid dynamics perspective. In Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances (ed. Zeitlin, V.), chap. 1, Elsevier.Google Scholar
Zeitlin, V., Medvedev, S. B. & Plougonven, R. 2003 Frontal geostrophic adjustment, slow manifold and nonlinear wave phenomena in one-dimensional rotating shallow-water. Part 1: theory. J. Fluid Mech. 481, 269290.Google Scholar