Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-20T02:05:10.089Z Has data issue: false hasContentIssue false

Centrifugal instabilities in an experimental open cavity flow

Published online by Cambridge University Press:  12 January 2016

C. L. Douay*
Affiliation:
LIMSI, CNRS, Université Paris-Saclay, F-91405 Orsay, France Sorbonne Universités, UPMC Univ. Paris 06, SMAER, 75252 Paris CEDEX 05, France
L. R. Pastur
Affiliation:
LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât 508, Rue John Von Neumann, F-91403 Orsay CEDEX, France
F. Lusseyran
Affiliation:
LIMSI, CNRS, Université Paris-Saclay, F-91405 Orsay, France
*
Email address for correspondence: [email protected]

Abstract

We present an experimental parametric study of spanwise centrifugal instabilities in an open cavity flow. We show that the mode selected at threshold depends on the cavity streamwise aspect ratio. For small aspect ratio, a steady mode is enhanced, while travelling waves are observed for large aspect ratio. The bifurcation is found to be supercritical for all configurations. Sidewall effects are shown to generate secondary flows that carry the vortical patterns. Spanwise confinement enhances the family of steady modes relative to the family of oscillatory modes. These results are discussed with respect to predictions from linear stability analyses and other flows developing centrifugal instabilities.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aidun, C. K., Triantafillopoulos, N. G. & Benson, J. D. 1991 Global stability of a lid-driven cavity with throughflow: flow visualization studies. Phys. Fluids A 3, 20812091.CrossRefGoogle Scholar
Albensoeder, S. & Kuhlmann, H. C. 2006 Nonlinear three-dimensional flow in the lid-driven square cavity. J. Fluid Mech. 569, 465480.Google Scholar
Albensoeder, S., Kuhlmann, H. C. & Rath, H. J. 2001 Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem. Phys. Fluids 13 (1), 121135.Google Scholar
Alizard, F., Robinet, J.-Ch. & Gloerfelt, X. 2012 A domain decomposition matrix-free method for global linear stability. Comput. Fluids 66, 6384.Google Scholar
Barkley, D., Gomes, M. G. M. & Henderson, R. D. 2002 Three-dimensional instability in flow over a backward-facing step. J. Fluid Mech. 473, 167190.Google Scholar
Basley, J., Pastur, L. R., Delprat, N. & Lusseyran, F. 2013 Space–time aspects of a three-dimensional multi-modulated open cavity flow. Phys. Fluids 25, 064105.Google Scholar
Basley, J., Pastur, L. R., Lusseyran, F., Soria, J. & Delprat, N. 2014 On the modulating effect of three-dimensional instabilities in open cavity flows. J. Fluid Mech. 759, 546578.Google Scholar
Beaudoin, J.-F., Cadot, O., Aider, J.-L. & Wesfreid, J. E. 2004 Three-dimensional stationary flow over a backward-facing step. Eur. J. Mech. (B/Fluids) 23, 147155.CrossRefGoogle Scholar
Boppana, V. B. L. & Gajjar, J. S. B. 2010 Global flow instability in a lid-driven cavity. Intl J. Numer. Meth. Fluids 62, 827853.Google Scholar
Brès, G. A. & Colonius, T. 2008 Three-dimensional instabilities in compressible flow over open cavities. J. Fluid Mech. 599, 309339.Google Scholar
Burguete, J., Mancini, H. L. & Pérez-Garcia, C. 1993 Dynamics of a secondary instability in Bénard–Marangoni convection with unidimensional heating. Europhys. Lett. 23 (6), 401407.Google Scholar
Chang, K., Constantinescu, G. & Park, S.-O. 2006 Analysis of the flow and mass transfer processes for the incompressible flow past an open cavity with a laminar and a fully turbulent incoming boundary layer. J. Fluid Mech. 561, 113145.Google Scholar
Chattelier, L., Laumonier, J. & Gervais, Y. 2004 Theoretical and experimental investigations of low Mach number turbulent cavity flows. Exp. Fluids 36, 728740.CrossRefGoogle Scholar
Chen, K. K., Tu, J. H. & Rowley, C. W. 2012 Variants of dynamic mode decomposition: connections between Koopman and Fourier analyses. J. Nonlinear Sci. 22, 887915.Google Scholar
Chicheportiche, J., Merle, X., Gloerfelt, X. & Robinet, J.-Ch. 2008 Direct numerical simulation and global stability analysis of three-dimensional instabilities in a lid-driven cavity. C. R. Méc. 336, 586591.Google Scholar
Cross, M. C. 1986 Traveling and standing waves in binary-fluid convection in finites geometries. Phys. Rev. Lett. 57 (23), 29352938.Google Scholar
Ding, Y. & Kawahara, M. 1999 Three-dimensional linear stability analysis of incompressible viscous flows using the finite element method. Intl J. Numer. Meth. Fluids 31, 451479.3.0.CO;2-O>CrossRefGoogle Scholar
Faure, T. M., Adrianos, P., Lusseyran, F. & Pastur, L. 2007 Visualizations of the flow inside an open cavity at medium range Reynolds numbers. Exp. Fluids 42, 169184.Google Scholar
Faure, T. M., Pastur, L., Lusseyran, F., Fraigneau, Y. & Bisch, D. 2009 Three-dimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape. Exp. Fluids 47, 395410.Google Scholar
Forestier, N., Jacquin, L. & Geffroy, P. 2003 The mixing layer over a deep cavity at high-subsonic speed. J. Fluid Mech. 475, 101145.Google Scholar
Koseff, J. R. & Street, R. L. 1984a Visualization studies of a shear driven three-dimensional recirculating flow. Trans. ASME J. Fluids Engng 106, 2129.Google Scholar
Koseff, J. R. & Street, R. L. 1984b On end wall effects in a lid-driven cavity flow. Trans. ASME J. Fluids Engng 106, 385389.Google Scholar
Koseff, J. R. & Street, R. L. 1984c The lid-driven cavity flow: a synthesis of qualitative and quantitative observations. Trans. ASME J. Fluids Engng 106, 390398.Google Scholar
Lanzerstorfer, D. & Kuhlmann, H. C. 2012 Global stability of the two-dimensional flow over a backward-facing step. J. Fluid Mech. 693, 127.Google Scholar
Larchevêque, L., Sagaut, P., Mary, I. & Labbé, O. 2003 Large-eddy simulation of a compressible flow past a deep cavity. Phys. Fluids 15 (1), 193210.Google Scholar
Manneville, P. 2005 Spatio-temporal chaos. Encyclopedia of Nonlinear Science (ed. Scott, A.), pp. 860863. Routledge.Google Scholar
Maull, D. J. & East, L. F. 1963 Three-dimensional flow in cavities. J. Fluid Mech. 16, 620632.Google Scholar
Meseguer-Garrido, F., de Vicente, J., Valero, E. & Theofilis, V. 2011 Effect of aspect ratio on the three-dimensional global instability analysis of incompressible open cavity flows. In Proceedings of the 6th AIAA Theoretical Fluid Mechanics Conference (TFMC6), pp. 309339.Google Scholar
Meseguer-Garrido, F., de Vicente, J., Valero, E. & Theofilis, V. 2014 On linear instability mechanisms in incompressible open cavity flow. J. Fluid Mech. 752, 219236.Google Scholar
Migeon, C. 2002 Details on the start-up development of the Taylor–Görtler-like vortices inside a square-section lid-driven cavity for $1000\leqslant Re\leqslant 3200$ . Exp. Fluids 33, 594602.Google Scholar
Pastur, L. R., Fraigneau, Y., Lusseyran, F. & Basley, J. 2013 From linear stability analysis to three dimensional organisation in an incompressible open cavity flow. Phys. Fluids (submitted) arXiv:1207.6576v1.Google Scholar
Podvin, B., Fraigneau, Y., Lusseyran, F. & Gougat, P. 2006 A reconstruction method for the flow past an open cavity. J. Fluids Eng. 128, 531540.Google Scholar
Quénot, G. M., Pakleza, J. & Kowalewski, T. A. 1998 Particle image velocimetry with optical flow. Exp. Fluids 25, 177189.Google Scholar
Rockwell, D. & Naudascher, E. 1979 Self-sustained oscillations of impinging free shear layers. Annu. Rev. Fluid Mech. 11, 6794.Google Scholar
Rossiter, J.1964 Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Tech Rep. Ministry of Aviation, Royal Aircraft Establishment, RAE Farnborough.Google Scholar
Rowley, C. W., Colonius, T. & Basu, A. J. 2002 On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J. Fluid Mech. 455, 315346.Google Scholar
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.Google Scholar
Theofilis, V., Duck, P. W. & Owen, J. 2004 Viscous linear stability analysis of rectangular duct and cavity flows. J. Fluid Mech. 505, 249286.Google Scholar
Welch, P. D. 1967 Modern Spectrum Analysis. IEEE.Google Scholar

Douay et al. supplementary movie

Left spanwise travelling wave inside the open cavity

Download Douay et al. supplementary movie(Video)
Video 4.5 MB

Douay et al. supplementary movie

Right spanwise travelling wave inside the open cavity

Download Douay et al. supplementary movie(Video)
Video 3.8 MB

Douay et al. supplementary movie

Superimposition of left and right spanwise travelling waves inside the open cavity

Download Douay et al. supplementary movie(Video)
Video 11.5 MB