Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T05:09:43.061Z Has data issue: false hasContentIssue false

Observations on the mineral metabolism of pullets: VI. The mobilization of body calcium for shell formation

Published online by Cambridge University Press:  27 March 2009

R. H. Common
Affiliation:
Ministry of Agriculture far Northern Ireland and the Queen's University of Belfast
R. W. Hale
Affiliation:
Agricultural Research Institute of Northern Ireland and the Queen's University of Belfast

Extract

1. Some recent developments of mineral balance studies on laying fowl are discussed and applied to the interpretation of the average results of twenty-six balance experiments with pullets.

2. Several of the experiments are re-examined in detail from the same standpoint.

3. A tentative hypothesis covering the relations between the calcium metabolism of shell formation and the calcium-phosphorus metabolism of bone is put forward on the basis of this reconsideration of available data. It is suggested that some degree of mobilization of skeletal calcium is a normal feature of shell formation in the fowl, the fraction of bone mineral material mobilized always having a higher Ca: P ratio than the skeleton as a whole, although the actual ratio may vary with the calcium in the diet and with the form in which the calcium is provided.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1941

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Buckner, G. D. & Martin, J. M. (1920). J. biol. Chem. 41, 195CrossRefGoogle Scholar
Burmeister, B. R., Scott, H. M. & Card, L. E. (1939). Proc. 7th World's Poult. Congress, p. 99.Google Scholar
Common, R. H. (1932). J. agric. Sci. 22, 567.CrossRefGoogle Scholar
Common, R. H. (1933). J. agric. Sci. 23, 555.CrossRefGoogle Scholar
Common, R. H. (1935). Thesis, University of London.Google Scholar
Common, R. H. (1936 a). J. agric. Sci. 26, 85.CrossRefGoogle Scholar
Common, R. H. (1936 b). J. agric. Sci. 26, 492.CrossRefGoogle Scholar
Common, R. H. (1938). J. agric. Sci. 28, 347.CrossRefGoogle Scholar
Common, R. H. (1940 a). J. agric. Sci. 30, 113.CrossRefGoogle Scholar
Common, R. H. (1940 b). Nature, Lond., 146, 98.CrossRefGoogle Scholar
Edin, H. & Andersson, A. (1937). Rep. No. 476 Central Inst. agric. Res. Stockholm.Google Scholar
Goto, K. (1918). J. biol. Chem. 36, 355.CrossRefGoogle Scholar
Grossfeld, J. (1938). Handbuch der Eierkunde, p. 85.CrossRefGoogle Scholar
Halnan, E. T. (1925). J. nat. Poult. Inst. 10, 40.Google Scholar
Halnan, E. T. (1936 a). Kongressbericht, 1, 53. VI. Weltgeflügelkongress.Google Scholar
Halnan, E. T. (1936 b). The Scientific Principles of Poultry Feeding. London: H.M. Stationery Office.Google Scholar
Kaupp, B. F. & Ivey, J. E. (1930). J. agric. Res. 23, 721.Google Scholar
Logan, M. A. & Taylor, H. L. (1937). J. biol. Chem. 119, 273.CrossRefGoogle Scholar
McGowan, J. R. (1934). Biochem. Z. 272, 9.Google Scholar
Marek, J., Wellman, O. & Urbanyi, L. (1934). Hoppe-Seyl. Z. 226, 3.CrossRefGoogle Scholar
Morgan, C. & Mitchell, J. H. (1938). Poult. Sci. 17, 99CrossRefGoogle Scholar
Morgulis, S. (1931). J. biol. Chem. 93, 455.CrossRefGoogle Scholar
Tyler, C. (1940 a). Biochem. J. 34, 202.CrossRefGoogle Scholar
Tyler, C. (1940 b). Biochem. J. 34, 1427.CrossRefGoogle Scholar
Warren, D. C. & Conrad, R. M. (1939). J. agric. Res. 58, 875.Google Scholar