Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-03T05:30:55.477Z Has data issue: false hasContentIssue false

Organic and inorganic fertilization effects on DTPA-extractable Fe, Cu, Mn and Zn, and their concentration in the edible portion of crops

Published online by Cambridge University Press:  17 December 2010

C. MAQUEDA*
Affiliation:
Instituto de Recursos Naturales y Agrobiología (CSIC) Apdo. 1052, 41080, Sevilla, Spain
J. F. HERENCIA
Affiliation:
Centro de Investigación y Formación Agraria ‘Las Torres-Tomejil’ (CIFA), P.C. Alcalá del Rio, Sevilla, Spain
J. C. RUIZ
Affiliation:
Centro de Investigación y Formación Agraria ‘Las Torres-Tomejil’ (CIFA), P.C. Alcalá del Rio, Sevilla, Spain
M. F. HIDALGO
Affiliation:
Instituto de Recursos Naturales y Agrobiología (CSIC) Apdo. 1052, 41080, Sevilla, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The application of organic composts to soil may affect the availability of micronutrients and their concentration in plants. The present field research study compared soil micronutrient extractability after 5 years of organic fertilization v. conventional inorganic fertilization. Iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn) were extracted from soil using diethylene triamine pentaacetic acid (DTPA) and the data obtained were compared with the concentration of these micronutrients in the edible portion of the crop. The study was carried out on a loam soil classified as a Xerofluvent. The soil was fertilized with composted plant residues or with conventional inorganic fertilizer and all treatments were replicated four times in a randomized complete block design. In all cases a crop rotational system was applied. The use of organic fertilization resulted in a higher extractability for all the elements studied; however, the micronutrient content in the edible part of the crops was variable depending on the plant species and element. Crop yields depended on the type of crop rather than the type of soil fertilization. The present study showed that the use of plant compost and the elimination of synthetic fertilizers result in an increase of Fe, Cu, Mn and Zn extractability compared to soil treated with inorganic fertilization, which should provide long-term fertility benefits.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adiloğlu, A. & Kurşun, I. (2003). Determination of suitable chemical extraction methods for available zinc content of paddy soils at Thrace region in Turkey. Communication in Soil Science and Plant Analysis 34, 26072617.CrossRefGoogle Scholar
Almas, A. R., Mcbride, M. B. & Singh, B. R. (2000). Solubility and lability of cadmium and zinc in two soils treated with organic matter. Soil Science 165, 250259.CrossRefGoogle Scholar
Alvarez, J. M. & Gonzalez, D. (2006). Zinc transformations in neutral soil and zinc efficiency in maize fertilization. Journal of Agriculture and Food Chemistry 54, 94889495.CrossRefGoogle ScholarPubMed
AOAC (Association of Official Analytical Chemistry) (1990). Official Methods of Analysis, 15th edn (Ed. Helrich, K.). Arlington, VA: AOAC.Google Scholar
Beltrán-González, F., Pérez-López, A. J., López-Nicolás, J. M. & Carbonell-Barrachina, A. A. (2008). Effects of agricultural practices on instrumental colour, mineral content, carotenoid composition, and sensory quality of mandarin orange juice, cv. Hernandina. Journal of the Science of Food and Agriculture 88, 17311738.CrossRefGoogle Scholar
Biswas, C. R. & Benbi, D. K. (1997). Sustainable yield trends of irrigated maize and wheat in a long-term experiment on a loamy sand in semi-arid India. Nutrient Cycling in Agroecosystems 46, 225234.CrossRefGoogle Scholar
Bolan, N. S. & Duraisamy, V. P. (2003). Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Australian Journal of Soil Research 41, 533555.CrossRefGoogle Scholar
Bulluck, L. R., Brosius, M., Evanylo, G. K. & Ristaino, J. B. (2002). Organic and synthetic amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology 19, 147160.CrossRefGoogle Scholar
Clark, M. S., Horwath, W. S., Shennan, C. & Scow, K. M. (1998). Changes in soil chemical properties resulting from organic and low input farming practices. Agronomy Journal 90, 662671.CrossRefGoogle Scholar
Dar, W. D. (2004). Macro-benefits from micronutrients for grey to green revolution in agriculture. In IFA International Symposium on Micronutrients, 23–25 February 2004, New Delhi, India (CD-ROM). Available online at: http://www.fertilizer.org/ifa/Home-Page/LIBRARY/Conference-papers/Agriculture-Conferences/2004-micronutrients (verified 21 October 2010).Google Scholar
Demolon, A. & Leroux, D. (1952). Guide pour l´etude Experimental des sols. Paris, France: Gautier Villars.Google Scholar
Diaz-Barrientos, E., Madrid, L., Maqueda, C., Morillo, E., Ruiz-Cortes, E., Vasallote, E. & Carrillo, M. (2003). Copper and zinc retention by an organically amended soil. Chemosphere 50, 911917.CrossRefGoogle ScholarPubMed
Fliessbach, A., Oberholzer, H. R., Gunst, L. & Mäder, P. (2007). Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystem and Environment 118, 273284.CrossRefGoogle Scholar
Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma 122, 109119.CrossRefGoogle Scholar
Gee, G. W. & Bauder, J. W. (1979). Particle-size analysis hydrometer. A simplified method for routine textural analysis and a sensitive test of measurement parameters. Soil Science Society of America Journal 43, 10041007.CrossRefGoogle Scholar
Hargreaves, J. C., Adl, M. S., Warman, P. R. & Rupasinghe, H. P. V. (2008). The effects of organic and conventional nutrient amendments on strawberry cultivation: fruit yield and quality. Journal of the Science of Food and Agriculture 88, 26692675.CrossRefGoogle Scholar
Herencia, J. F., Ruiz-Porras, J. C., Melero, S., Garcia-Galavis, P. A., Morillo, E. & Maqueda, C. (2007). Effect of organic versus mineral fertilization in soil fertility, macronutrients content in crops, and yield. Agronomy Journal 99, 973983.CrossRefGoogle Scholar
Herencia, J. F., Ruiz, J. C., Morillo, E., Melero, S., Villaverde, J. & Maqueda, C. (2008 a). The effect of organic and mineral fertilization on micronutrient availability in soil. Soil Science 173, 6980.CrossRefGoogle Scholar
Herencia, J. F., Ruiz, J. C., Melero, S., Garcia-Galavis, P. A. & Maqueda, C. (2008 b). A short-term comparison of organic versus conventional agriculture in a silty loam soil using two organic amendments. Journal of Agricultural Science, Cambridge 146, 677687.CrossRefGoogle Scholar
Hesse, P. R. (1971). A Textbook of Soil Chemical Analysis. London: Murray.Google Scholar
Jackson, M. L. (1958). Soil Chemical Analysis. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Jones, J. B., Wolf, B. & Mills, H. A. (1991). Factors affecting plant composition. In Plant Analysis Handbook (Eds Jones, J. B., Wolf, B. & Mills, H. A.), pp. 4588. Athens, GA: Micro-Macro Publishing Inc.Google Scholar
Kabata-Pendias, A. (2004). Soil-plant transfer of trace elements – an environmental issue. Geoderma 122, 143149.CrossRefGoogle Scholar
Kabata-Pendias, A. & Pendias, H. (2001). Trace Elements in Soils and Plants, 3rd edn. New York: CRC Press.Google Scholar
Katyal, J. C. & Sharma, B. D. (1991). DTPA-extractable and total Zn, Cu, Mn and Fe in Indian soils and their association with some soil properties. Geoderma 49, 165179.CrossRefGoogle Scholar
Lindsay, W. L. & Norvell, W. L. (1978). Development of DTPA soil test for Zinc, iron, manganese and copper. Soil Science Society of America Journal 42, 421428.CrossRefGoogle Scholar
Lindsay, W. L. & Thorne, D. W. (1954). Bicarbonate ion and oxygen level as related to chlorosis. Soil Science 77, 271279.CrossRefGoogle Scholar
Loneragan, J. F. (1981). Distribution and movement of copper in plants. In Copper in Soils and Plants (Eds Loneragan, J. F., Robson, A. D. & Graham, R. D.), pp. 165188. New York: Academic Press.Google Scholar
Mandal, L. N. & Mitra, R. R. (1982). Transformation of iron and manganese in rice soils under different moisture regimes and organic matter applications. Plant and Soil 69, 4556.CrossRefGoogle Scholar
MAPA (1994). Métodos Oficiales de Análisis. Tomo III (Plantas, productos orgánicos fertilizantes, suelos, aguas, productos fitosanitarios, fertilizantes inorgánicos). Madrid, Spain: Ministerio de Agricultura, Pesca y Alimentación.Google Scholar
Maroto, J. V. (1995). Horticultura Herbácea Especial. Madrid, Spain: Mundi-Prensa.Google Scholar
Melero, S., Madejón, E., Herencia, J. F. & Ruiz, J. C. (2008). Effect of implementing organic farming on chemical and biochemical properties of an irrigated loam soil. Agronomy Journal 100, 136144.CrossRefGoogle Scholar
Mengel, K. & Kirkby, E. A. (1982). Principles of Plant Nutrition. 3rd edn. Bern, Switzerland: International Potash Institute.Google Scholar
Mengel, K., Scherer, H. W. & Malissiovas, N. (1979). Chlorosis from the aspect of soil chemistry and vine nutrition. Mitteilungen Klosterneuburg 29, 151156.Google Scholar
Nube, M. & Voortman, R. L. (2006). Simultaneously Addressing Micronutrient Deficiencies in Soils, Crops, Animal and Human Nutrition: Opportunities for Higher Yields and Better Health. Staff Working Paper WP-06-02. Amsterdam: SOWVLU. Centre for World Food Studies.Google Scholar
Olsen, S. R., Cole, C. W., Watanabe, F. S. & Dean, L. A. (1954). Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate. U.S. Department of Agriculture Circular 939. Washington, DC: Government Printing Office.Google Scholar
Perez-Rodríguez, J. L., Maqueda, C. & Justo, A. (1990). Mineralogy of soils containing pyrophyllite from southern Spain. Isolation and identification of the mineral. Soil Science 150, 671679.CrossRefGoogle Scholar
Pomares, F., Olmos, J., Estela, M. & Tarazona, F. (1994). Fertilidad de la tierra y estado nutritivo de cítricos en cultivo ecológico. In Proceedings of the 1st Congreso de la Sociedad Española de Agricultura Ecológica (Ed. SEAE), pp. 238244. Toledo, Spain: Sociedad Española de Agricultura Ecológica.Google Scholar
Rengel, Z., Batten, G. D. & Crowley, D. E. (1999). Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Research 60, 2740.CrossRefGoogle Scholar
Rodriguez-Rubio, P., Morillo, E., Madrid, L., Undabeytia, T. & Maqueda, C. (2003). Retention of copper by a calcareous soil and its textural fractions: influence of amendment with two agroindustrial residues. European Journal of Soil Science 54, 401409.CrossRefGoogle Scholar
Ruiz, J. C., Melero, S. & Herencia, J. F. (2000). Status microbiano del suelo en parcelas nutridas orgánica versus mineralmente. In Proceedings: IV Congreso de la Sociedad Española de Agricultura Ecológica (Ed. Fundación Cátedra Iberoamericana). Cordoba, Spain: Sociedad Española de Agricultura Ecológica.Google Scholar
Rupa, T. R. & Shukla, L. M. (1999). Comparison of four extractants and chemical fractions for assessing available zinc and copper in soils of India. Communication in Soil Science and Plant Analysis 30, 25792591.CrossRefGoogle Scholar
Saeed, M. & Fox, R. L. (1977). Relations between suspension pH and zinc solubility in acid and calcareous soils. Soil Science 124, 199204.CrossRefGoogle Scholar
Sharma, B. D., Mukhopaddhyay, S. S., Sidhu, P. S. & Katyal, J. C. (2000). Pedospheric attributes in distribution of total and DTPA-extractable Zn, Cu, Mn and Fe in Indo-Gangetic plains. Geoderma 96, 131151.CrossRefGoogle Scholar
Singh, R. P. & Agrawal, M. (2007). Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 67, 22292240.CrossRefGoogle ScholarPubMed
Smilde, K. W., Koukoulakis, P. & Van Luit, B. (1974). Crop response to phosphate and lime on acid sandy soils high in zinc. Plant and Soil 41, 445457.CrossRefGoogle Scholar
Soil Survey Staff. (1999). Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Survey. Agricultural Handbook 436. Washington, DC: U.S. Government Printing Office.Google Scholar
Tucker, B. M. (1954). The determination of exchangeable calcium and magnesium in carbonate soils. Australia Journal of Agricultural Research 5, 705715.Google Scholar
Van Der Watt, H. H., Sumner, M. E. & Cabrera, M. L. (1994). Bioavailability of copper manganese and zinc in poultry litter. Journal of Environmental Quality 23, 4349.CrossRefGoogle Scholar
Warman, P. R. (2005). Soil fertility yield and nutrient contents of vegetable crops after 12 years of compost or fertilizer amendments. Biological Agriculture and Horticulture 23, 8596.CrossRefGoogle Scholar
Warman, P. R. & Havard, K. A. (1997). Yield, vitamin and mineral contents of organically and conventionally grown carrots and cabbage. Agriculture, Ecosystem and Environment 61, 155162.CrossRefGoogle Scholar
Warman, P. R. & Havard, K. A. (1998). Yield, vitamin and mineral contents of organically and conventionally grown potatoes and sweet corn. Agriculture, Ecosystem and Environment 68, 207216.CrossRefGoogle Scholar