Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-03T05:35:37.842Z Has data issue: false hasContentIssue false

Mechanisms for drought resistance in early maturing cvar Flordastar peach trees

Published online by Cambridge University Press:  04 February 2011

C. D. MELLISHO
Affiliation:
Dpto. Riego, Centro de Edafología y Biología Aplicada del Segura (CSIC), P.O. Box 164, E-30100 Espinardo (Murcia), Spain
Z. N. CRUZ
Affiliation:
Dpto. Fisiología y Bioquímica, Instituto Nacional de Ciencias Agrícolas (INCA), Ctra. de Tapaste, km 3.5. San José de Las Lajas (La Habana), Cuba
W. CONEJERO*
Affiliation:
Dpto. Riego, Centro de Edafología y Biología Aplicada del Segura (CSIC), P.O. Box 164, E-30100 Espinardo (Murcia), Spain
M. F. ORTUÑO
Affiliation:
Dpto. Riego, Centro de Edafología y Biología Aplicada del Segura (CSIC), P.O. Box 164, E-30100 Espinardo (Murcia), Spain
P. RODRÍGUEZ
Affiliation:
Dpto. Fisiología y Bioquímica, Instituto Nacional de Ciencias Agrícolas (INCA), Ctra. de Tapaste, km 3.5. San José de Las Lajas (La Habana), Cuba
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Adult early maturing peach trees (Prunus persica (L.) Batsch cvar Flordastar) grafted onto P. persica×Prunus amygdalus GF-677 peach rootstock, were subjected to low water availability (water stress) and recovery periods for 28 and 7 days, respectively, during summer 2009. Control plants were irrigated daily at 1·3 estimated crop reference evapotranspiration (ETC) in order to obtain non-limiting soil water conditions. Active osmotic adjustment was observed at the end of the stress period. However, the magnitude of this osmotic adjustment (0·18 MPa) was not sufficient to modify the leaf water potential at turgor loss point. The observed active osmotic adjustment that maintained turgor was in contrast to other results in potted peach trees, where no osmotic adjustment was observed, and highlights the importance of field studies in which water stress is developed gradually over a prolonged period. Relative apoplastic water content (RWCa) values were high and decreased as a result of water stress. The rapid decrease in leaf conductance from the beginning of the stress period, together with the delay in stomatal reopening after rewatering, indicated that stomatal behaviour was not a simple passive response to water deficit. The results indicate that drought resistance in early maturing peach trees is based both on avoidance mechanisms, such as stomatal control and tolerance mechanisms, including active osmotic adjustment and high RWCa.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, R. G., Pereira, R. S., Raes, D. & Smith, M. (1998). Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper 56. Rome: FAO.Google Scholar
Álvarez, S., Navarro, A., Bañón, S. & Sánchez-Blanco, M. J. (2009). Regulated deficit irrigation in potted Dianthus plants: effects of severe and moderate water stress on growth and physiological responses. Scientia Horticulturae 122, 579585.CrossRefGoogle Scholar
Arndt, S. K., Wanek, W., Clifford, S. C. & Popp, M. (2000). Contrasting adaptations to drought stress in field-grown Ziziphus mauritiana and Prunus persica trees: water relations, osmotic adjustment and carbon isotope composition. Australian Journal of Plant Physiology 27, 985996.Google Scholar
Berman, M. E. & DeJong, T. M. (1997). Crop load and water stress on daily stem growth in peach (Prunus persica). Tree Physiology 17, 467472.CrossRefGoogle ScholarPubMed
Besset, J., Genard, M., Girard, T., Serra, V. & Bussi, C. (2001). Effect of water stress applied during the final stage of rapid growth of peach trees (cv. Big-Top). Scientia Horticulturae 91, 289303.CrossRefGoogle Scholar
Boland, A. M., Jerie, P. H., Mitchell, P. D., Goodwin, I. & Connor, D. J. (2000). Long-term effects of restricted root volume and regulated deficit irrigation on peach I. Growth and mineral nutrition. Journal of American Society for Horticultural Science 125, 135142.CrossRefGoogle Scholar
Chalmers, D. J., Mitchell, P. D. & van Heek, L. (1981). Control of peach tree growth and productivity by regulated water supply, tree density and summer pruning. Journal of American Society for Horticultural Science 106, 307312.CrossRefGoogle Scholar
Clifford, S. C., Arndt, S. K., Corlett, J. E., Joshi, S., Sankhla, N., Popp, M. & Jones, H. G. (1998). The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in Ziziphus mauritiana (Lamk). Journal of Experimental Botany 49, 967977.CrossRefGoogle Scholar
Conejero, W., Ortuño, M. F., Mellisho, C. D. & Torrecillas, A. (2010). Influence of crop load on maximum daily trunk shrinkage reference equations for irrigation scheduling of early maturing peach trees. Agricultural Water Management 97, 333338.CrossRefGoogle Scholar
Correia, M. J., Torres, F. & Pereira, J. S. (1989). Water and nutrient supply regimes and the water relations of juvenile leaves of Eucalyptus globulus. Tree Physiology 5, 459471.CrossRefGoogle ScholarPubMed
Crisosto, C. H., Johnson, R. S., DeJong, T. M. & Day, K. R. (1997). Orchard factors affecting postharvest stone fruit quality. HortScience 32, 820823.CrossRefGoogle Scholar
Cutler, J. M., Rains, D. W. & Loomis, R. S. (1977). The importance of cell size in the water relations of plants. Physiologia Plantarum 40, 255260.CrossRefGoogle Scholar
Davies, W. J. & Zhang, J. (1991). Root signals and regulation of growth and development of plants in drying soils. Annual Review of Plant Physiology and Plant Molecular Biology 42, 5576.CrossRefGoogle Scholar
Escobar-Gutierrez, A. J., Zipperlin, B., Carbonne, F., Moing, A. & Gaudillère, J. P. (1998). Photosynthesis, carbon partitioning and metabolite content during drought stress in peach seedlings. Australian Journal of Plant Physiology 25, 197205.Google Scholar
Fereres, E., Cruz-Romero, G., Hoffman, G. J. & Rawlins, S. L. (1979). Recovery of orange trees following severe water stress. Journal of Applied Ecology 16, 833842.CrossRefGoogle Scholar
Fereres, E. & Goldhamer, D. A. (1990). Deciduous fruit and nut trees. In Irrigation of Agricultural Crops (Eds Stewart, B. A. & Nielsen, D. R.), pp. 9871017. Agronomy Monograph 30. Madison, WI: ASA, CSSA, SSSA.Google Scholar
Girona, J., Mata, M., Goldhamer, D. A., Johnson, R. S. & DeJong, T. M. (1993). Patterns of soil and tree water status and leaf functioning during regulated deficit irrigation scheduling in peach. Journal of the American Society for Horticultural Science 118, 580586.CrossRefGoogle Scholar
Greenwood, D. J., Zhang, K., Hilton, H. W. & Thompson, A. J. (2010). Opportunities for improving irrigation efficiency with quantitative models, soil water sensors and wireless technology. Journal of Agricultural Science, Cambridge 148, 116.CrossRefGoogle Scholar
Jiménez, M., de Juan, J. A., Tarjuelo, J. M. & Ortega, J. F. (2010). Effect of irrigation uniformity on evapotranspiration and onion yield. Journal of Agricultural Science, Cambridge 148, 139157.CrossRefGoogle Scholar
Jones, M. M. & Rawson, H. M. (1979). Influence of rate of development of leaf water deficits upon photosynthesis, leaf conductance, water use efficiency and osmotic potential in sorghum. Physiologia Plantarum 45, 103111.CrossRefGoogle Scholar
Kikuta, S. B. & Richter, H. (1986). Graphical evaluation and partitioning of turgor responses to drought in leaves of durum wheat. Planta 168, 3642.CrossRefGoogle ScholarPubMed
Lakso, A. N. (1990). Interactions of physiology with multiple environmental stresses in horticultural crops. HortScience 25, 13651369.CrossRefGoogle Scholar
Li, S. H., Huguet, J. G., Schoch, P. G. & Orlando, P. (1989). Response of peach tree growth and cropping to soil water deficit at various phonological stages of fruit development. Journal of Horticultural Science 64, 541552.CrossRefGoogle Scholar
Mansfield, T. A. (1987). Hormones as regulators of water balance. In Plant Hormones and their Role in Plant Growth and Development (Ed. Davies, P. J.), pp. 411430. Dordrecht, The Netherlands: Martinus Nijhoff Publishers.CrossRefGoogle Scholar
Melgar, J. C., Dunlop, J. M. & Syvertsen, J. P. (2010). Growth and physiological responses of the citrus rootstock Swingle citrumelo seedlings to partial rootzone drying and deficit irrigation. Journal of Agricultural Science, Cambridge 148, 593602.CrossRefGoogle Scholar
Morgan, J. M. (1984). Osmoregulation and water stress in higher plants. Annual Review of Plant Physiology 35, 299319.CrossRefGoogle Scholar
Parker, W. C. & Pallardi, S. G. (1987). The influence of resaturation method and tissue type on pressure-volume analysis of Quercus alba L. seedlings. Journal of Experimental Botany 38, 535549.CrossRefGoogle Scholar
Ranney, T. G., Bassuk, N. L. & Whitlow, T. H. (1991). Osmotic adjustment and solute constituents in leaves and roots of water stressed cherry (Prunus) trees. Journal of the American Society for Horticultural Science 116, 684688.CrossRefGoogle Scholar
Rieger, M. (1995). Offsetting effects of reduced root hydraulic conductance of reduced root hydraulic conductance and osmotic adjustment following drought. Tree Physiology 15, 379385.CrossRefGoogle ScholarPubMed
Rieger, M. & Duemmel, M. J. (1992). Comparison of drought resistance among Prunus species from divergent habitats. Tree Physiology 11, 369380.CrossRefGoogle ScholarPubMed
Rodrigues, M. L., Chaves, M. M., Wendler, R., David, M. M., Quick, W. P., Leegood, R. C., Stitt, M. & Pereira, J. S. (1993). Osmotic adjustment in water stressed grapevine leaves in relation to carbon assimilation. Australian Journal of Plant Physiology 20, 309321.Google Scholar
Ruiz-Sánchez, M. C., Domingo, R., Savé, R., Biel, C. & Torrecillas, A. (1997). Effects of water deficit and rewatering on leaf water relations of Fino lemon plants. Biologia Plantarum 39, 623631.CrossRefGoogle Scholar
Sánchez-Blanco, M. J., Bolarín, M. C., Alarcón, J. J. & Torrecillas, A. (1991). Salinity effects on water relations in Lycopersicon esculentum and its wild salt-tolerant relative species L. pennellii. Physiologia Plantarum 83, 269274.CrossRefGoogle Scholar
Savé, R., Biel, C., Domingo, R., Ruiz-Sánchez, M. C. & Torrecillas, A. (1995). Some physiological and morphological characteristics of citrus plants for drought resistance. Plant Science 110, 167172.CrossRefGoogle Scholar
Savé, R., Peñuelas, J., Marfá, O. & Serrano, L. (1993). Changes in leaf osmotic and elastic properties and canopy architecture of strawberries under mild water stress. HortScience 28, 925927.CrossRefGoogle Scholar
Serrano, L. & Peñuelas, J. (2005). Contribution of physiological and morphological adjustments to drought resistance in two Mediterranean tree species. Biologia Plantarum 49, 551559.CrossRefGoogle Scholar
Sharon, Y., Bravdo, B. A. & Bar, N. (2001). Aspects of the water economy of avocado trees (Persea Americana, cv. Hass). South African Avocado Growers’ Association Yearbook 24, 5559.Google Scholar
Soil Survey Staff (2006). Keys to Soil Taxonomy, 10th edn. Washington, DC: USDA-Natural Resources Conservation Service.Google Scholar
SPPS Inc. (1996). SPSS Professional Statistics 7.0. Chicago, IL: SPSS.Google Scholar
Steinberg, S. L., Miller, J. C. Jr. & McFarland, M. J. (1989). Dry matter partitioning and vegetative growth of young peach trees under water stress. Australian Journal of Plant Physiology 17, 2336.Google Scholar
Torrecillas, A., Alarcón, J. J., Domingo, R., Planes, J. & Sánchez-Blanco, M. J. (1996). Strategies for drought resistance in leaves of two almond cultivars. Plant Science 118, 135143.CrossRefGoogle Scholar
Torrecillas, A., Galego, R., Pérez-Pastor, A. & Ruiz-Sánchez, M. C. (1999). Gas exchange and water relations of young apricot plants under drought conditions. Journal of Agricultural Science, Cambridge 132, 445452.CrossRefGoogle Scholar
Torrecillas, A., Guillaume, C., Alarcón, J. J. & Ruiz-Sánchez, M. C. (1995). Water relations of two tomato species under water stress and recovery. Plant Science 105, 167172.CrossRefGoogle Scholar
Torrecillas, A., Ruiz-Sánchez, M. C., Del Amor, F. & León, A. (1988). Seasonal variations on water relations of Amygdalus communis L. under drip irrigated and nonirrigated conditions. Plant and Soil 106, 215220.CrossRefGoogle Scholar
Torrecillas, A., Sánchez-Blanco, M. J., Alarcón, J. J. & Ruiz-Sánchez, M. C. (2001). Physiological and agronomical aspects of the response of tree crops to deficit irrigation. In Recent Research Developments in Plant Biology (Vol. 1. Part I), pp. 143154. Kerala: Research Signpost.Google Scholar
Turner, N. C. (1988). Measurement of plant water status by the pressure chamber technique. Irrigation Science 9, 289308.CrossRefGoogle Scholar
Turner, N. C. & Jones, M. M. (1980). Turgor maintenance by osmotic adjustment: a review and evaluation. In Adaptation of Plants to Water and High Temperature Stress (Eds Turner, N. C. & Kramer, P. J.), pp. 87103. London: John Wiley & Sons.Google Scholar
Tyree, M. T. & Richter, H. (1981). Alternative methods of analysing water potential isotherms: some cautions and clarifications. 1. The impact of non-ideality and of some experimental errors. Journal of Experimental Botany 32, 643653.CrossRefGoogle Scholar
Tyree, M. T. & Richter, H. (1982). Alternative methods of analysing water potential isotherms: some cautions and clarifications. II. Curvilinearity in water potential isotherms. Canadian Journal of Botany 60, 911916.CrossRefGoogle Scholar
Wang, Z., Quebedeaux, B. & Stutte, G. W. (1995). Osmotic adjustment: effect of water stress on carbohydrates in leaves, stems and roots of apple. Australian Journal of Plant Physiology 22, 747754.Google Scholar
Wilson, J. R., Fisher, M. J., Schulze, E. D., Dolby, G. R. & Ludlow, M. M. (1979). Comparison between pressure–volume and dew point-hygrometry techniques for determining the water relations characteristics of grass and legume leaves. Oecologia 41, 7778.CrossRefGoogle Scholar
Xiloyannis, C., Massai, R. & Dichio, B. (2005). L'acqua e la tecnica dell'irrigazione. In Il Pesco (Eds Fideghelli, C. & Sansavini, S.), pp. 145171. Bologna, Italy: Edagricole.Google Scholar
Young, E., Hand, J. M. & Wiest, S. C. (1981). Diurnal variation in water potential components and stomatal resistance of irrigated peach seedlings. Journal of the American Society for Horticultural Science 106, 337340.CrossRefGoogle Scholar
Young, E., Hand, J. M. & Wiest, S. C. (1982). Osmotic adjustment and stomatal conductance in peach seedlings under severe water stress. HortScience 17, 791793.CrossRefGoogle Scholar