Published online by Cambridge University Press: 27 March 2009
Development of the fibrous root system of sugar beet was studied by washing soil samples taken from field experiments through the growing season. At the beginning of June the root system was still poorly developed but during June there was rapid proliferation. In the top 70 cm there was only little further increase in root density after the end of June. Below 70 cm root density increased up to the end of August. Throughout the season fibrous root density decreased with depth. Despite the origin of the lateral roots from two grooves on the storage root, fibrous root distributions at each depth around individual plants were essentially uniform from mid-June onwards. In the absence of nitrogen fertilizer, fibrous root development exceeded that of a crop given fertilizer, particularly at depths greater than 50 cm early in the season. The maximum value of root density was 2·8 cm/cm3 soil recorded in the top 10 cm in mid-September. Compared with published data for other crops, the sugar-beet root system was sparser than that of winter wheat or maize but denser than that of a soya bean or cassava.
Soil water content was measured with a neutron probe. Inflows to roots were calculated from soil water content changes in different soil layers. In the top 30 cm, inflows ranged up to 10·8 μl water/cm root.day and were up to five times higher than published inflows for winter wheat. At 30–100 cm sugar beet and winter wheat inflows were generally similar. The 0–30 and 30–120 cm layers contributed about 80 and 20% respectively of the total water use by sugar beet while no uptake was recorded below 110 cm. Previous studies have shown that sugar beet often takes up water from soil deeper than 110 cm, although it is not unknown for the depth of water removal to be restricted.