Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T02:51:35.208Z Has data issue: false hasContentIssue false

Physiological correlates in migratory noctuids: the velvetbean caterpillar as a model*

Published online by Cambridge University Press:  19 September 2011

Abner M. Hammond*
Affiliation:
Department of Entomology, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, USA
Howard W. Fescemyer
Affiliation:
Department of Entomology, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, USA
*
Department of Entomology, Louisiana Agricultural Experiment Station, Room 402 Life Sciences Bldg., Baton Rouge, LA 70803, U.S.A.
Get access

Abstract

The effects of larval population density and food quality on the velvetbean caterpillar, Anticarsia gemmatalis Hübner, were compared with investigations of other migratory noctuids. Crowded larvae of the velvetbean caterpillar responded with: (1) an increase in the degree of dark pigmentation; (2) a decrease in larval, pupal and adult size; (3) a prolongation of the larval stage and a decrease in weight gain in the ultimate stadium; and (4) low juvenile hormone and juvenile hormone esterase haemolymph titres.

The effects of flight, throughout a 4 hr flight period, on the haemolymph titres and whole body contents of carbohydrate and lipid are presented for the velvetbean caterpillar and discussed relative to other noctuid moths. Total carbohydrate concentration decreased during the first 30–45 min of flight, and total fatty acid concentration increased during the first 30–60 min of flight, after which it declined and stabilized at preflight levels. Lipid reserves and the small amount of lipid depletion after long periods of flight indicated that velvetbean caterpillar adults are capable of making long distance movements in which lipid is the principal flight fuel.

Juvenile hormone regulated the effect of density on larval colour, size and growth rate. Applications of juvenile hormone to crowded larvae increased the proportion of the lighter (green), larger and faster developing phase. This hormone action suggests that the juvenile hormone titre of crowded larvae is lower than that of uncrowded larvae.

Genetic differentiation among populations of velvetbean caterpillars suggests that south-central United States populations originate from overwintering populations in Mexico or south Texas. A system has been developed, using pheromone-baited bucket-type traps, to investigate the population dynamics and migration of the velvetbean caterpillar in Louisiana and Texas.

Résumé

La qualité de la nourriture et la densité larvaire des populations d'Anticarsia gemmatalis Hübner furent comparées avec celles d'autres noctuides migrateurs. Les larves provenant d'élevages à forte densité démontrent (1) une augmentation de la pigmentation foncée, (2) une réduction de la taille des larves, des pupes et des adultes, (3) un allongement de la période larvaire et une réduction de poids au dernier stade, et (4) de faibles concentrations d'hormone juvénile et d'estérase d'hormone juvénile dans l'hémolymphe.

Les effets d'un vol de quatre heures sur la concentration dans l'hémolymphe et le corps d'A. gemmatalis d'hydrate de carbone et de lipides sont présentés et discutés par rapport aux autres noctuides. La concentration totale en hydrate de carbone décroit au cours des 30–45 min de vol, et la concentration totale des corps gras augmente après les premiers 30–60 min de vol, puis décline et se stabilise aux niveaux prévols. Les réserves en lipides et la faible réduction des lipides suivant de longues périodes de vol indiquent que les adultes de A. gemmatalis sont capables de se déplacer sur de longues distances en utilisant les lipides comme principale source d'énergie.

L'hormone juvénile contrôle l'effet de la densité larvaire sur la couleur larvaire, la taille et le taux de croissance. L'application d'hormone juvénile sur les larves qui proviennent d'élevages de haute densité augmente la proportion de larves pâles (vertes), grosses et à développement rapide. L'action de cette hormone suggère que la concentration d'hormone juvénile chez les élevages de forte densité est plus faible que celles d'élevages à densité plus faible.

Les différences génétiques entre les populations d'A. gemmatalis suggèrent que les populations du centre sud des Etats-Unis originent de populations hivernantes du Mexique ou du sud du Texas. Un système utilisant les pièges à phéromones de type “seau” (Universal moth trap®) a été mis au point et permettra d'étudier la dynamique des populations et la migration d'A. gemmatalis en Louisiane et au Texas.

Type
Symposium IV: Migration and Dispersal of Tropical Noctuid Moths
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Approved for publication by the Director of the Louisiana Agricultural Experiment Station as manuscript number 86-17-0111.

References

REFERENCES

Alford, A. R. and Hammond, A. M. (1982a) Plusiinae (Lepidoptera: Noctuidae) populations in Louisiana soybean ecosystems as determined with looplure-baited traps. J. Econ. Ent. 75, 647650.Google Scholar
Alford, A. R. and Hammond, A. M. (1982b) Temperature modification of female sex pheromone release In Trichoplusia ni (Hübner) and Pseudoplusia includens (Walker) (Lepidoptera: Noctuidae). Environ. Ent. 11, 889892.CrossRefGoogle Scholar
Anazonwu, D. L. and Johnson, S. J. (1986) Effects of host and density on larval colour, size and development of the velvetbean caterpillar, Anticarsia gemmatalis. Environ. Ent. 15, 779783.CrossRefGoogle Scholar
Angelo, M. J. and Slansky, F. Jr (1984) Body building by insects: Trade-offs in resource allocation with particular reference to migratory species. Fla. Ent. 67, 2241.Google Scholar
Beenakkers, A. M. Th., van der Horst, D. J. and van Marrewijk, W. J. A. (1985) Biochemical processes directed to flight muscle metabolism. In Comprehensive Insect Physiology Biochemistry and Pharmacology (Edited by Kerkut, G. A. and Gilbert, L. I.), pp. 451486. Pergamon Press, New York.Google Scholar
Brown, J. J. and Chippendale, G. M. (1974) Migration of the monarch butterfly, Danaus plexippus: Energy sources. J. Insect Physiol. 20, 11171130.CrossRefGoogle ScholarPubMed
Buschman, L. L., Whitcomb, W. H., Neal, T. M. and Mays, D. L. (1977) Winter survival and hosts of the velvetbean caterpillar in Florida. Fla. Ent. 20, 267273.CrossRefGoogle Scholar
Cardé, R. T. (1979) Behavioural responses of moths to female-produced pheromones and the utilization of attractant-baited traps for population monitoring. In Movement of Highly Mobile Insects: Concepts and Methodology in Research (Edited by Rabb, R. L. and Kennedy, G. G.), pp. 286315. University Graphics, North Carolina State University, Raleigh.Google Scholar
Collins, F. L. and Johnson, S. J. (1985) Reproductive response of caged adult velvetbean caterpillar and soybean looper to the presence of weeds. Agric. Ecosyst. Environ. 14, 139149.Google Scholar
Conti, L. and Waddill, V. (1982) Development of velvetbean caterpillar, Anticarsia gemmatalis (Lepidoptera: Noctuidae), on several winter hosts. Environ. Ent. 11, 11121113.Google Scholar
Dallman, S. H. and Herman, W. S. (1978) Hormonal regulation of haemolymph lipid concentration in the monarch butterfly, Danaus plexippus. Gen. Comp. Endocr. 36, 142150.Google Scholar
Dingle, H. (1972) Migration strategies of insects. Science 175, 13271335.CrossRefGoogle ScholarPubMed
Ellisor, L. O. (1942) Notes on the biology and control of the velvetbean caterpillar, Anticarsia gemmatalis Hbn. La. Agric. Exp. Sta. Bull. 350, 1723.Google Scholar
Faure, J. C. (1943a) The phases of the lesser armyworm, Laphygma exigua (Hübner). Farming sth. Africa. 18, 6978.Google Scholar
Faure, J. C. (1943b) Phase variation in the armyworm, Laphygma exempta (Walk.) Sci. Bull. Dep. Agric, sth. Africa No. 234.Google Scholar
Fescemyer, H. W. and Hammond, A. M. (1986a) Effect of density and plant age on color phase variation and development of larval velvetbean caterpillar, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae). Environ. Ent. 15, 784789.CrossRefGoogle Scholar
Fescemyer, H. W. and Hammond, A. M. (1986b) Effect of larval density and plant age on adult size and biochemical composition of the migrant moth, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae). Environ. Ent. (in press).Google Scholar
Fescemyer, H. W. and Hammond, A. M. (1986c) The relationship between population density, juvenile hormone, juvenile hormone esterase and phase variation in larvae of the migrant insect, Anticarsia gemmatalis Hübner. J. insect Physiol. (in press).Google Scholar
Gatehouse, A. G. (1986) Migration in the African armyworm Spodoptera exempta: Genetic determination of migratory capacity and a new synthesis. XVII Int. Cong. Entmol. (in press). Springer-Verlag, New York.Google Scholar
Greene, G. L. (1979) Evidence for migration of the velvetbean caterpillar. In Movement of Highly Mobile Insects: Concepts and Methodology in Research (Edited by Rabb, R. L. and Kennedy, G. G.), pp. 406408. North Carolina State University Press, Raleigh.Google Scholar
Hammock, B. D. (1985) Regulation of juvenile hormone titer: Degradation. In Comprehensive Insect Physiology Biochemistry and Pharmacology (Edited by Kerkut, G. A. and Gilbert, L. I.), pp. 431472. Pergamon Press, New York.Google Scholar
Hammock, B. D., Abdel-AAl, Y. A. I., Hanzlik, T., Jones, D., Jones, G., Roe, R. M., Rudnicka, M., Sparks, T. C. and Wing, K. D. (1984) The role of juvenile hormone metabolism in the metamorphosis of selected Lepidoptera. In Biosynthesis, Metabolism and Mode of Action of Invertebrate Hormones (Edited by Hoffmann, J. and Porchet, M.), pp. 416425. Springer, New York.Google Scholar
Harrison, G. T. (1980) Dispersal polymorphisms in insects. A. Rev. Ecol. Syst. 11, 95118.CrossRefGoogle Scholar
Hartstack, A. W., Lopez, J. D., Muller, R. A., Sterling, W. L., King, E. G., Witz, J. A. and Eversull, A. C. (1982) Evidence of long range migration of Heliothis zea (Boddie) into Texas and Arkansas. Southwestern Ent. 7, 188201.Google Scholar
Heath, R. R., Tumlinson, J. H., Leppla, N. C., McLaughlin, J. R., Dueben, B., Dundulis, E. and Guy, R. H. (1983) Identification of a sex pheromone produced by female velvetbean caterpillar moth. J. Chem. Ecol. 9, 645656.CrossRefGoogle ScholarPubMed
Hintze-Podufal, C. (1978) Analyse zum Melanineinbau in das Farbmuster der Larven von Eudia pavonia (L.) (Lep., Saturnidae). Mitt. Schweiz. Ent. Ges. 51, 103106.Google Scholar
Imura, O. (1982) Studies on the colour variation in larvae of Ephestia kukniella Zeller (Lepidoptera: Phyctidae). II. Effect of environmental factors on larval pigmentation. Appl. Entomol. Zoll. 17, 59.Google Scholar
Iwao, S. (1968) Some effects of grouping in lepidopterous insects. Colloq. Int. C.N.R.S. 173, 185210.Google Scholar
Johnson, C. G. (1969) Migration and Dispersal of Insects by Flight. Northern, London.Google Scholar
Johnson, S. J., Hammond, A. M. and Foil, L. D. (1983) Effect of cotton variety and age on phase variation in crowded and uncrowded larval cotton leafworms (Lepidoptera: Noctuidae). Bull. Ecol. Soc. Am. 64, 119.Google Scholar
Johnson, S. J., Foil, L. D., Hammond, A. M. and Church, G. E. (1985) Effects of environmental factors on phase variation in larval cotton leafworms, Alabama argillacea (Lepidoptera: Noctuidae). Ann. Ent. Soc. Am. 78, 3540.Google Scholar
Kaster, L. V. M. and Showers, W. B. (1982) Evidence of Spring immigration and Autumn reproductive diapause of the adult black cutworm in Iowa. Environ. Ent. 11, 306312.Google Scholar
Lees, A. D. (1983) The endocrine control of polymorphism in aphids, In Endocrinology of Insects (Edited by Downer, R. G. H. and Laufer, H.), pp. 369377. Alan R. Liss, Inc., New York.Google Scholar
Long, D. B. (1953) Effects of population density on larvae of Lepidoptera. Trans. R. Ent. Soc. London 104, 543585.CrossRefGoogle Scholar
Madsen, H. F. and Vakenti, J. M. (1972) Codling moth: Female-baited and synthetic pheromone traps as population indicators. Environ. Ent. 1, 554557.Google Scholar
Matsumoto, S., Isogai, A., Suzuki, A., Ogura, N. and Sonobe, H. (1981) Purification and properties of the melanization and reddish coloration hormone (MRCH) in the armyworm, Leucania separata (Lepidoptera). Insect Biochem. 11, 725733.Google Scholar
Matthée, J. J. (1945) Biochemical differences between the solitary and gregarious phases of locusts and noctuids. Bull. Ent. Res. 36, 343371.Google Scholar
Matthée, J. J. (1946) A study of the phases of the armyworm (Laphygma exempta Walk.). J. Ent. Soc. sth. Africa 9, 6077.Google Scholar
Matthée, J. J. (1947) Phase variation in the lawn caterpillar (Spodoptera abyssinia Guen.). J. Ent. Soc. sth. Africa 10, 1623.Google Scholar
Minks, A. D. and Dejong, D. J. (1975) Determination of spraying dates for Adoxophyes orana by sex pheromone traps and temperature recordings. J. Econ. Ent. 68, 729732.Google Scholar
Mitchell, E. R. (1979) Migration by Spodoptera exigua and Spodoptera frugiperda, North America style. In Movement of Highly Mobile Insects: Concepts and Methodology in Research (Edited by Rabb, R. L. and Kennedy, G. G.), pp. 386393. University Graphics, North Carolina State University, Raleigh.Google Scholar
Mitchell, E. R. and Heath, R. R. (1986) Pheromone trapping system for the velvetbean caterpillar (Lepidoptera: Noctuidae). J. Econ. Ent. 79, 289292.Google Scholar
Mitchell, E. R., Chalfant, R. B., Green, G. L. and Creighton, C. S. (1975) Soybean looper: populations in Florida, Georgia and South Carolina as determined with pheromone-baited BL traps. J. Econ. Ent. 68, 747–50.Google Scholar
Moscardi, F., Barfield, C. S. and Allen, G. E. (1981) Consumption and development of velvetbean caterpillar as influenced by soybean phenology. Environ. Ent. 10, 880884.Google Scholar
Muller, R. A. (1979) Synoptic weather types along the central gulf coast: variability and predictability. In Movement of Highly Mobile Insects: Concepts and Methodology in Research. (Edited by Rabb, R. L. and Kennedy, G. G.), pp. 133146. University Graphics, North Carolina State University, Raleigh.Google Scholar
Nijhout, H. F. and Wheeler, D. E. (1982) Juvenile hormone and the physiological basis of insect polymorphisms. Q. Rev. Biol. 57, 109133.CrossRefGoogle Scholar
Ogura, N. (1975) Hormonal control of larval coloration in the armyworm, Leucania separata. J. Insect Physiol. 21, 559576.Google Scholar
Parencia, C. R. and Rainwater, C. F. (1964) First finding of cotton leafworm larvae in the United States, 1922–1965. J. Econ. Ent. 57, 432.CrossRefGoogle Scholar
Parker, W. E. and Gatehouse, A. G. (1985a) The effect of larval rearing conditions on flight performance in females of the African armyworm, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae). Bull. Ent. Res. 75, 3547.Google Scholar
Parker, W. E. and Gatehouse, A. G. (1985b) Genetic factors controlling flight performance and migration in the African armyworm moth, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae). Bull. Ent. Res. 75, 4963.Google Scholar
Pashley, D. P. and Johnson, S. J. (1986) Genetic population structure of migratory moths: The velvetbean caterpillar (Lepidoptera: Noctuidae). Ann. Ent. Soc. Am. 79, 2630.Google Scholar
Pashley, D. P., Johnson, S. J. and Sparks, A. N. (1985) Genetic population structure of migratory moths: The fall armyworm (Lepidoptera: Noctuidae). Ann. Ent. Soc. Am. 78, 756762.Google Scholar
Pener, M. P. (1983) Endocrine aspects of phase polymorphism in locusts. In Endocrinology of Insects (Edited by Downer, R. G. H. and Laufer, H.), pp. 379394. Alan R. Liss, Inc., New York.Google Scholar
Peters, T. M. and Barbosa, P. (1977) Influence of population density on size, fecundity and developmental rate of insects in culture. A. Rev. Ent. 22, 431450.Google Scholar
Rankin, M. A. and Singer, M. C. (1984) Insect movement: Mechanisms and effects. In Ecological Entomology (Edited by Huffaker, C. D. and Rabb, R. L.), pp. 185216. John Wiley & Sons, New York.Google Scholar
Rivnay, E. and Meisner, J. (1966) The effects of rearing conditions on the immature stages and adults of Spodoptera littoralis (Biosd.). Bull. Ent. Res. 56, 623634.Google Scholar
Roelofs, W. L. (1979) Pheromones and other chemical attractants: pheromone trap specificity and potency, pp. 272–285. In Movement of Highly Mobile Insects: Concepts and Methodology in Research. (Edited by Rabb, R. L. and Kennedy, G. G.). University Graphics, North Carolina State University, Raleigh.Google Scholar
Sehnal, F. (1976) Action of juvenile hormone on different groups of insects. In The Juvenile Hormones (Edited by Gilbert, L. I.), pp. 301322. Plenum Press, New York.Google Scholar
Shorey, H. H. (1974) Environmental and physiological control of insect sex pheromone behaviour. In Pheromones. (Edited by Birch, M. C.), pp. 6280. American Elsevier, N.Y.Google Scholar
Slansky, F. Jr (1982) Insect nutrition: An adaptationist's perspective. Fla. Ent. 65, 4571.Google Scholar
Slansky, F. Jr, and Scriber, J. M. (1985) Food consumption and utilization. In Comprehensive Insect Physiology Biochemistry and Pharmacology (Edited by Kerkut, G. A. and Gilbert, L. I.), Vol. 4, pp. 87163. Pergamon Press, New York.Google Scholar
Taylor, R. A. J. (1979) A simulation model of locust migratory behaviour. J. Anim. Ecol. 48, 577602.Google Scholar
Teo, L-H., Fescemyer, H. W., Woodring, J. P. and Hammond, A. M. (1986) Carbohydrate and fatty acid titres during flight of the migrant noctuid moth, Anticarsia gemmatalis Hübner. Insect Biochem. (in Press).Google Scholar
Tester, C. F. (1977) Constituents of soybean cultivars differing in insect resistance. Phytochemistry 16, 18991901.Google Scholar
Tojo, S., Morita, M. and Hiruma, K. (1985) Effects of juvenile hormone on some phase characteristics in the common cutworm, Spodoptera litura. J. Insect Physiol. 31, 243249.Google Scholar
Toscano, N. C., Mueller, A. J., Sevacherian, V., Sharma, R. K., Nillus, T. and Reynolds, H. T. (1974) Insecticide applications based on hexalure® trap catches versus automatic schedule treatments for pink bollworm moth control. J. Econ. Ent. 67, 522524.Google Scholar
Turgeon, J. and McNeil, J. (1982) Calling behavior of the armyworm, Pseudaletia unipuncta. Ent. Exp. and Appl. 31, 402408.CrossRefGoogle Scholar
Uvarov, B. P. (1921) A revision of the genus Locusta L. (Pachytulus Fieb.) with a new theory as to the periodicity and migrations of locusts. Bull. Ent. Res. 12, 135163.Google Scholar
van der Horst, D. J., van Doorn, J. M. and Beenakkers, A. M. Th. (1978) Dynamics in the haemolymph trehalose pool during flight of the locust, Locusta migratoria. Insect Biochem. 8, 413416.Google Scholar
van der Horst, D. J., Houben, N. M. D. and Beenakkers, A. M. Th. (1980) Dynamics of energy substrates in the haemolymph of Locusta migratoria during flight. J. Insect Physiol. 26, 441448.Google Scholar
van Handel, E. and Nayar, J. K. (1972a) Turn-over of diglycerides during flight and rest in the moth Spodoptera frugiperda. Insect Biochem. 2, 812.Google Scholar
van Handel, E. and Nayar, J. K. (1972b) Direct use of carbohydrates during sustained flight in the moth, Spodoptera frugiperda. Insect Biochem. 2, 203208.CrossRefGoogle Scholar
van Handel, E. (1974) Lipid utilization during sustained flight of moths. J. Insect Physiol. 20, 23292332.Google Scholar
Watson, J. R. (1915) The velvet bean caterpillar (Anticarsia gemmatalis). Fla. Agric. Exp. Stn. Ann. Rep. 1914/1915, 4964.Google Scholar
Yagi, S. and Kuramochi, K. (1976) The role of juvenile hormone in larval duration and spermiogenesis in relation to phase variation in the tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Appl. Eni. Zool. 11, 133138.CrossRefGoogle Scholar
Zaher, M. A. and Moussa, M. A. (1961) Effects of population density on Prodenia litura (Lepidoptera: Noctuidae). Ann. Ent. Soc. Am. 54, 145149.Google Scholar