Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T15:13:28.378Z Has data issue: false hasContentIssue false

Glycoconjugate Vaccines: What Next?

Published online by Cambridge University Press:  14 October 2009

Kathryn E. Stein
Affiliation:
U.S. Food and Drug Administration

Abstract

The principle that infants can be protected from invasive diseases caused by encapsulated organisms has been proved with the introduction of Haemophilus influenzae type b conjugate vaccines. The use of glycoconjugates to implement some of the goals of the Children's Vaccine Initiative requires a clear delineation of the chemical and immunological specifications for optimal vaccines.

Type
Special Section: Vaccines and Public Health: Assessing Technologies and Public Policies
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ahonkhai, V. I., Lukacs, L. J., Jonas, L. C., et al. Haemophilus influenzae type b conjugate vaccine (meningococcal protein conjugate) (PedvaxHIB): Clinical evaluation. Pediatrics, 1990, 85, 676–81.CrossRefGoogle ScholarPubMed
2.Anderson, P.Antibody responses to Haemophilus influenzae type b and diphtheria toxin induced by conjugates of oligosaccharides of the type b capsule with the nontoxic protein CRM197. Infection and Immunity, 1983, 39, 233–38.CrossRefGoogle ScholarPubMed
3.Avery, O. T., & Goebel, W. F.Chemo-immunological studies on conjugated carbohydrate-proteins. II: Immunological specificity of synthetic sugar-protein antigens. Journal of Experimental Medicine, 1929, 50, 533–50.CrossRefGoogle ScholarPubMed
4.Black, S. B., Shinefield, H. R., Fireman, B., et al. Efficacy in infancy of oligosaccharide conjugate Haemophilus influenzae type b (HbOC) vaccine in a United States population of 61080 children. Pediatric Infectious Diseases Journal, 1991, 10, 97104.CrossRefGoogle Scholar
5.Contributions to microbiology and immunology, vol. 10. Conjugate vaccines. New York: Karger, 1989.Google Scholar
6.Ishioka, G. Y., Lamont, A. G., Thomson, D., et al. MHC interaction and T cell recognition of carbohydrates and glycopeptides. Journal of Immunology, 1992, 148, 2446–51.CrossRefGoogle Scholar
7.Jörbeck, H. H. A., Svenson, S. B., & Lindberg, A. A.Artificial Salmonella vaccines: Salmonella typhimurium O-antigen-specific oligosaccharide-protein conjugates elicit opson-izing antibodies that enhance phagocytosis. Infection and Immunity, 1981, 32, 497502.CrossRefGoogle ScholarPubMed
8.Kabat, E. A. Carbohydrates as antigens and immunogens: Size, shape and nature of carbohydrate epitopes and idiotopes, polysaccharide vaccines. In Bell, R. & Torrigiani, G. (eds.). Toward better carbohydrate vaccines: Proceedings of a meeting sponsored by WHO, 9–11 October, 1986, Geneva. New York: John Wiley & Sons, 1987, 7598.Google Scholar
9.Liu, M. A., Friedman, A., Oliff, A. I., et al. A vaccine carrier derived from Neisseria meningitidis with mitogenic activity for lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 4633–37.CrossRefGoogle ScholarPubMed
10.Madore, D. V., Johnson, C., Phipps, D. C., et al. Safety and immunologic responses to the Haemophilus influenzae type b oligosaccharide-CRM197 conjugate vaccine in 1- to 6-month old infants. Pediatrics, 1990, 85, 331–37.Google Scholar
11.Marburg, S., Jorn, D., Tolman, R. L., et al. Bimolecular chemistry of macromolecules: Synthesis of bacterial polysaccharide conjugates with Neisseria meningitidis membrane protein. Journal of the American Chemical Society, 1986, 108, 5282–87.CrossRefGoogle Scholar
12.Mclntyre, B. W., Evans, E. L., & Bednarczyk, J. L.Lymphocyte surface antigen L25 is a member of the integrin receptor superfamily. Journal of Biological Chemistry, 1989, 264, 13745–50.CrossRefGoogle Scholar
13.Paoletti, L. C., Kasper, D. L., Michon, F., et al. Effects of chain length on the immunoge-nicity in rabbits of group B Streptococcus type III oligosaccharide-tetanus toxoid conjugates. Journal of Clinical Investigation, 1992, 89, 203–09.CrossRefGoogle ScholarPubMed
14.Peeters, C. C. A. M., Tenbergen-Meekes, A. M., Evenberg, D. E., et al. A comparative study of the immunogenicity of pneumococcal type 4 polysaccharide and oligosaccharide tetanus toxoid conjugates in adult mice. Journal of Immunology, 1991, 146, 4308–14.CrossRefGoogle ScholarPubMed
15.Rubinstein, L. J., Goldberg, B., Hiernaux, J., et al. Idiotype-antiidiotype regulation V: The requirement for immunization with antigen or monoclonal antiidiotype antibodies for the activation of beta(2→6) and beta(2→l) polyfructosan-reactive clones in BALB/c mice treated at birth with minute amounts of anti-A48 idiotype antibodies. Journal of Experimental Medicine, 1983, 158, 1129–44.CrossRefGoogle Scholar
16.Santosham, M., Wolf, M., Reid, R., et al. The efficacy in Navajo infants of a conjugate vaccine consisting of Haemophilus influenzae type b polysaccharide and Neisseria meningitidis outer-membrane protein complex. New England Journal of Medicine, 1991, 324, 1767–72.CrossRefGoogle ScholarPubMed
17.Sette, A., O'Sullivan, D., Kreiger, J. I., et al. MHC-antigen-T cell interactions: An overview. Seminars in Immunology, 1992, 3, 195202.Google Scholar
18.Stein, K. E.Thymus-independent and thymus-dependent responses to polysaccharide antigens. Journal of Infectious Diseases, 1992, 165 (suppl. 1), S49–S52.CrossRefGoogle ScholarPubMed
19.Stein, K. E., Zopf, D. A., Miller, C. B., et al. The immune response to a thymus-dependent form of B512 dextran requires the presence of Lyb5+ lymphocytes. Journal of Experimental Medicine, 1983, 157, 657–66.CrossRefGoogle ScholarPubMed
20.Szu, S. C., Li, X., Schneerson, R., et al. Comparative immunogenicities of Vi polysaccha-ride-protein conjugates composed of cholera toxin or its B subunit as a carrier bound to high- or lower-molecular weight Vi. Infection and Immunity, 1989, 57, 3823–27.CrossRefGoogle ScholarPubMed