Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T09:03:38.008Z Has data issue: false hasContentIssue false

Study of the noise processes in microwave oscillators based on passive optical resonators

Published online by Cambridge University Press:  23 April 2013

Khaldoun Saleh*
Affiliation:
CNRS, LAAS, Université de Toulouse, 7 Avenue du Colonel Roche, F-31077, France. Phone: +33 5 6133 6879 CNES, 18 Avenue Edouard Belin, Toulouse F-31401, France
Pierre-Henri Merrer
Affiliation:
CNRS, LAAS, Université de Toulouse, 7 Avenue du Colonel Roche, F-31077, France. Phone: +33 5 6133 6879
Amel Ali-Slimane
Affiliation:
CNRS, LAAS, Université de Toulouse, 7 Avenue du Colonel Roche, F-31077, France. Phone: +33 5 6133 6879
Olivier Llopis
Affiliation:
CNRS, LAAS, Université de Toulouse, 7 Avenue du Colonel Roche, F-31077, France. Phone: +33 5 6133 6879
Gilles Cibiel
Affiliation:
CNES, 18 Avenue Edouard Belin, Toulouse F-31401, France
*
Corresponding author: K. Saleh Email: [email protected]

Abstract

Two types of optoelectronic oscillators delivering high spectral purity microwave signals are presented in this paper. These oscillators use the Pound–Drever–Hall laser stabilization technique to lock the laser carrier onto two different types of passive optical resonators featuring high-quality factors: a fiber ring resonator (FRR) and a whispering gallery mode monocrystalline disk-shaped micro-resonator. The different noise processes occurring inside these oscillators are discussed. Particular attention is given to the conversion of the laser's amplitude and frequency noise into RF phase noise via the laser stabilization loop and the resonator, and via the photodetector nonlinearity as well. A modeling approach using CAD software is also proposed to qualitatively evaluate laser noise conversion through the optical resonator. Moreover, different contributions of nonlinear optical scattering noise are discussed, mainly in the case of the FRR-based oscillator. When controlling these nonlinear optical effects in the case of the FRR, low-phase noise operation of the oscillator has been achieved, with a −40 dBc/Hz noise level at 10 Hz offset frequency from a 10.2 GHz RF carrier.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Yao, X.S.; Maleki, L.: High frequency optical subcarrier generator. Electron. Lett., 30 (1994), 15251526.Google Scholar
[2]Yao, X.S.; Eliyahu, D.; Maleki, L.: Progress in the optoelectronic oscillator – a ten year anniversary review. IEEE Microwave Theor. Tech. Symp. Digest, 1 (2004), 287290.Google Scholar
[3]Eliyahu, D.; Maleki, L.: Low phase noise and spurious level in multi-loop optoelectronic oscillators, in IEEE Int. Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, pp. 405, 410, Tampa, May 2003.Google Scholar
[4]Okusaga, O. et al. : Spurious mode reduction in dual injection-locked optoelectronic oscillators. Opt. Express, 19 (2011), 58395854.Google Scholar
[5]Maleki, L.; Yao, X.S.; Yu, J.; Ilchenko, V.: New schemes for improved opto-electronic oscillator, in Int. Topical Meeting on Microwave Photonics, pp. 177, 180, Melbourne, November 1999.Google Scholar
[6]Savchenkov, A.A.; Matsko, A.B.; Ilchenko, V.S.; Maleki, L.: Optical resonators with ten million finesse. Opt. Express, 15 (2007), 67686773.Google Scholar
[7]Merrer, P.H.; Brahimi, H.; Llopis, O.: Optical techniques for microwave frequency stabilization: resonant versus delay line approaches and related modeling problems, in IEEE Int. topical meeting on Microwave photonics, Gold Coast, pp. 146, 149, Sept. 9 2008–Oct. 3 2008.Google Scholar
[8]Matsko, B.; Eliyahu, D.; Koonath, P.; Seidel, D.; Maleki, L.: Theory of coupled optoelectronic microwave oscillator I: expectation values. J. Opt. Soc. Am. B, 26 (2009), 10231031.Google Scholar
[9]Drever, R.W.P.; Hall, J.L.; Kowalski, F.V.; Hough, J.; Ford, G.M.; Munley, A.J.; Ward, H.: Laser phase and frequency stabilization using an optical resonator. Appl. Physics B, 31 (1983), 97105.Google Scholar
[10]Carmon, T.; Yang, L.; Vahala, K.: Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 12 (2004), 47424750.Google Scholar
[11]Maleki, L. et al. : On the development of photonic RF oscillators and resonant electro-optic modulators for advanced RF front-end applications, in IEEE IMS Symp. Digest, Baltimore, pp. 1, 4, June 2011.Google Scholar
[12]Merrer, P.H.; Saleh, K.; Llopis, O.; Berneschi, S.; Cosi, F.; Nunzi Conti, G.: Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators. Appl. Opt., 51 (2012), 47424748.Google Scholar
[13]Brahimi, H.; Martinez-Reyes, H.L.; Merrer, P.H.; Bouchier, A.; Llopis, O.: A CAD approach of microwave optical systems including noise performance, in European Microwave Conf., Rome, pp. 1642, 1645, Sept. 29 2009–Oct. 1 2009.Google Scholar
[14]Saleh, K.; Merrer, P.H.; Llopis, O.; Cibiel, G.: Optical scattering noise in high Q fiber ring resonators and its effect on optoelectronic oscillator phase noise. Opt. Lett., 37 (2012), 518520.Google Scholar
[15]Saleh, K.; Merrer, P.H.; Llopis, O.; Cibiel, G.: Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction, in IEEE Int. Frequency Control Symp., Baltimore, pp. 1, 6, May 2012.Google Scholar
[16]Saleh, K.; Llopis, O.; Cibiel, G.: Optical scattering induced noise in fiber ring resonator based optoelectronic oscillator. J. Lightwave Technol., 31 (2013), 14331446.Google Scholar
[17]Saleh, K.; Merrer, P.H.; Llopis, O.; Cibiel, G.: Millimeter wave generation using Brillouin scattering in a high Q fiber ring resonator, in IEEE Int. Topical Meeting on Microwave Photonics, The Netherlands, pp. 164, 167, Sept. 2012.CrossRefGoogle Scholar