Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-18T08:05:41.389Z Has data issue: false hasContentIssue false

Martian stick-like structures are not trace fossils: a new protocol for testing ichnogenicity synthesized from paleosol ichnology

Published online by Cambridge University Press:  03 September 2021

Jorge F. Genise*
Affiliation:
CONICET – Museo Argentino de Ciencias Naturales, División Icnología, Av. Ángel Gallardo 470, 1405 Buenos Aires, Argentina
*
Author for correspondence: Jorge F. Genise, E-mail: [email protected]

Abstract

There are different criteria that are usually analysed independently before identifying a new trace fossil, such as morphological regularity, completeness, dispersion, recurrence and complexity, surface morphology, and context. The synthesis of these criteria, as utilized in paleosol ichnology, composes a protocol that is presented herein for the first time and can be used for testing the ichnogenicity of trace-like structures in any paleoenvironment of Earth or Mars. As a study case, the Martian ‘stick-like structures’ do not fulfil any of the requirements posed by this protocol to be postulated as trace fossils. The ichnogenicity test, focussed exclusively on morphology and context, is simpler but equally useful as the biogenicity ones. It may be applied in the future with other potential cases before carrying on more complex analyses or to evaluate the astrobiological interest of trace-like structures.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baucon, A, Neto De Carvalho, C, Felletti, F and Cabella, R (2020) Ichnofossils, cracks or crystals? A test for biogenicity of stick-like structures from Vera Rubin Ridge, Mars. Geosciences 10, 39. doi:10.3390/geosciences10020039.CrossRefGoogle Scholar
Bennett, KA, Rivera-Hernández, F, Tinker, C, Horgan, B, Fey, DM, Edwards, C, Edgar, LA, Kronyak, R, Edgett, KS, Fraeman, A, Kah, LC, Henderson, M, Stein, N, Dehouck, E and Williams, AJ (2021) Diagenesis revealed by fine-scale features at Vera Rubin Ridge, Gale Crater, Mars. Journal of Geophysical Research: Planets 126, e2019JE006311.Google Scholar
Bertling, M, Braddy, S, Bromley, RG, Demathieu, G, Genise, JF, Mikuláš, R, Nielsen, JK, Nielsen, KSS, Rindsberg, A, Schlirf, M and Uchman, A (2006) Names for trace fossils: a uniform approach. Lethaia 39, 265286.CrossRefGoogle Scholar
Brasier, MD and Wacey, D (2012) Fossils and astrobiology: new protocols for cell evolution in deep time. International Journal of Astrobiology 11, 217228.CrossRefGoogle Scholar
Bromley, RG, Buatois, LA, Genise, JF, Labandeira, CC, Mángano, MG, Melchor, RN, Schlirf, M and Uchman, A (2007) Comments on the paper ‘Reconnaissance of Upper Jurassic Morrison Formation Ichnofossils, Rocky Mountain Region, USA: Paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses’ by Stephen T. Hasiotis. Sedimentary Geology 200, 141150.CrossRefGoogle Scholar
Buatois, LA and Mángano, MG (2011) Ichnology. Organism-Substrate Interactions in Space and Time. New York: Cambridge University Press, 358 pp.CrossRefGoogle Scholar
Calvin, WM, Shoffner, JD, Johnson, JR, Knoll, AH, Pocock, JM, Squyres, SW, Weitz, CM, Arvidson, RE, Bell, JF III, Christensen, PR, de Souza, PA Jr., Farrand, WH, Glotch, TD, Herkenhoff, KE, Jolliff, BL, Knudson, AT, McLennan, SM, Rogers, AD and Thompson, SD (2008) Hematite spherules at Meridiani: results from MI, Mini-TES, and Pancam. Journal of Geophysical Research 113, E12S37.CrossRefGoogle Scholar
Catling, DC (2004) On Earth, as it is on Mars? Nature 429, 707708.CrossRefGoogle ScholarPubMed
Chan, MA, Beitler, B, Parry, WT, Ormö, JJ and Komatsu, G (2004) A possible terrestrial analogue for hematite concretions on Mars. Nature 429, 731734.CrossRefGoogle Scholar
David, L (2018) Curiosity rover spots weird tube-like structures on Mars. Available online: https://www.space.com/39294-mars-rover-curiosity-weird-tube-structures.html.Google Scholar
DiGregorio, B (2018) Ichnological evidence for bioturbation in an ancient lake at Vera Rubin Ridge, Gale Crater, Mars. In: Proceedings of the 3rd International Convention on Geosciences and Remote Sensing, Ottawa, ON, Canada, p. 1.Google Scholar
Edgar, LA, Fedo, CM, Gupta, S, Banham, SG, Fraeman, AA, Grotzinger, JP, Stack, KM, Stein, NT, Bennett, KA, Rivera-Hernandez, F, Sun, VZ, Edgett, KS, Rubin, DM, House, C and Van Beek, J (2020) A lacustrine paleoenvironment recorded at Vera RubinRidge, Gale crater: overview of the sedimentology and stratigraphy observed by the Mars Science Laboratory Curiosity Rover. Journal of Geophysical Research: Planets 125, e2019JE006307. doi: 10.1029/2019JE006307.Google Scholar
Ekdale, AA and De Gibert, JM (2010) Paleoethologic significance of bioglyphs: fingerprints of the subterraneans. Palaios 25, 540545.CrossRefGoogle Scholar
Ekdale, AA, Bromley, RG and Pemberton, G (1984) Ichnology. The use of trace fossils in sedimentology and stratigraphy. SEPM Short Course 15, 1315.Google Scholar
Albani A, El, Mángano, MG, Buatois, LA, Bengtson, S, Riboulleau, A, Bekker, A, Konhauser, K, Lyons, T, Rollion-Bard, C, Bankole, O, Baghekema, SGL, Meunier, A, Trentesaux, A, Mazurier, A, Aubineau, J, Laforest, C, Fontaine, C, Recourt, P, Fru, EC, Macchiarelli, R, Reynaud, JY, Gauthier-Lafaye, F and Canfield, DE (2018) Organism motility in an oxygenated shallow-marine. Proceedings of the National Academy of Sciences USA 116, 34313436.CrossRefGoogle Scholar
Frydenvang, J, Mangold, N, Wiens, RC, Fraeman, AA, Edgar, LA, Fedo, CM, L'Haridon, J, Bedford, CC, Gupta, S, Grotzinger, JP, Bridges, J, Clark, BC, Rampe, EB, Forni, O, Gasda, PJ, Lanza, NL, Olilla, AM, Meslin, PY, Payré, V, Calef, F, Salvatore, M and House, C (2019a) The chemostratigraphy of the lacustrine Murray formation in Gale crater, Mars, and evidence for large-scale diagenesis in Vera Rubin ridge bedrock as implied by ChemCam observations. In: Proceedings of the Ninth International Conference on Mars 2019, Pasadena, CA, USA, LPI Contrib. No. 2089.Google Scholar
Frydenvang, J, Mangold, N, Wiens, RC, Fraeman, AA, Edgar, LA, Fedo, CM, L'Haridon, J, Bedford, CC, Gupta, S, Grotzinger, JP, Bedford, C, Bridges, J, Clark, BC, Rampe, EB, Forni, O, Gasda, PJ, Lanza, NL, Olilla, AM, Meslin, PY, Payré, V, Calef, F and Salvatore, M (2019b) The role of large-scale diagenesis in the formation of Vera Rubin Ridge in Gale crater, Mars, as implied by ChemCam observations. In: Proceedings of the 50th Lunar and Planetary Science Conference, The Woodlands, TX, USA, Volume 2019; LPI Contribution No. 2132.Google Scholar
Genise, JF (2016) Ichnoentomology: Insect Traces in Soils and Paleosols. NY: Springer, 695 pp.Google Scholar
Genise, JF and Harrison, T (2018) Walking on ashes: insect trace fossils from Laetoli indicate poor grass cover associated with early hominin environments. Palaeontology 61, 597624.CrossRefGoogle Scholar
Genise, JF, Bellosi, ES, Sarzetti, LC, Krause, JM, Dinghi, PA, Sánchez, MV, Umazano, AM, Puerta, P, Cantil, LF and Jicha, BR (2020) 100 Ma sweat bee nests: early and rapid co-diversification of crown bees and flowering plants. PLoS ONE 15, e0227789.CrossRefGoogle ScholarPubMed
Glaub, I, Golubic, S, Gektidis, M, Radtke, G and Vogel, K (2007) Microborings and microbial endoliths: geological implications. In: Miller, W III (ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier. Amsterdan, pp. 368381.CrossRefGoogle Scholar
Grotzinger, JP, Arvidson, RE, Bell III, JF, Calvin, W, Clark, BC, Fike, DA, Golombek, M, Greeley, R, Haldemann, A, Herkenhoff, KE, Jolliff, BL, Knoll, AH, Malin, M, McLennan, SM, Parker, T, Soderblom, L, Sohl-Dickstein, JN, Squyres, SW, Tosca, NJ and Watters, WA (2005) Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns Formation, Meridiani Planum, Mars. Earth and Planetary Science Letters 240, 1172.CrossRefGoogle Scholar
Grotzinger, JP, Sumner, DY, Kah, LC, Stack, K, Gupta, S, Edgar, L, Rubin, D, Lewis, K, Schieber, J, Mangold, N, Milliken, R, Conrad, PG, DesMarais, D, Farmer, J, Siebach, K, Calef III, F, Hurowitz, J, McLennan, SM, Ming, D, Vaniman, D, Crisp, J, Vasavada, A, Edgett, KS, Malin, M, Blake, D, Gellert, R, Mahaffy, P, Wiens, RC, Maurice, S, Grant, JA, Wilson, S, Anderson, RC, Beegle, L, Arvidson, R, Hallet, B, Sletten, RS, Rice, M, Bell III, J, Griffes, J, Ehlmann, B, Anderson, RB, Bristow, TF, Dietrich, WE, Dromart, G, Eigenbrode, J, Fraeman, A, Hardgrove, C, Herkenhoff, K, Jandura, L, Kocurek, G, Lee, S, Leshin, LA, Leveille, R, Limonadi, D, Maki, J, McCloskey, S, Meyer, M, Minitti, M, Newsom, H, Oehler, D, Okon, A, Palucis, M, Parker, T, Rowland, S, Schmidt, M, Squyres, S, Steele, A, Stolper, E, Summons, R, Treiman, A, Williams, R and Yingst, A (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science (New York, N.Y.) 343, 1242777.CrossRefGoogle ScholarPubMed
Heydari, E, Parker, TJ, Calef, FJ, Schroeder, JF, Van Beek, J, Rowland, SK and Fairen, AG (2018) Characteristics and the origin of the Vera Rubin Ridge, Gale Crater, Mars. In: Proceedings of the 49th Lunar and Planetary Science Conference 2018, The Woodlands, LPI Contrib No. 2083.Google Scholar
Howell, E (2018a) No, those aren't animal tracks on Mars. Available online: https://www.space.com/39894-marsrock-features-not-animal-tracks.html.Google Scholar
Howell, E. (2018b) Did crystals from ancient lakes on Mars form these tiny, weird things? Available online: https://www.space.com/39687-ancient-mars-lakes-made-weird-crystal-features.html.Google Scholar
Knaust, D (2012). Trace-fossil systematics. In Knaust, D and Bromley, RG (eds.), Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology. Elsevier. Amsterdam, Vol. 64, pp. 79101.CrossRefGoogle Scholar
L'Haridon, J, Mangold, N, Fraeman, AA, Johnson, JR, Cousin, A, Rapin, W, David, G, Dehouck, E, Sun, V, Frydenvang, J, Gasnault, O, Gasda, P, Lanza, N, Forni, O, Meslin, PY, Schwenzer, SP, Bridges, J, Horgan, B, House, CH, Salvatore, M, Maurice, S and Wiens, RC (2020) Iron mobility during diagenesis at Vera Rubin ridge, Gale Crater, Mars. Journal of Geophysical Research: Planets 125, e2019JE006299. doi: 10.1029/2019je006299.Google Scholar
Marion, GM, Kargel, JS and Catling, DC (2008) Modeling ferrous-ferric iron chemistry with application to Martian surface geochemistry. Geochimica and Cosmochimica Acta 72, 242266.CrossRefGoogle Scholar
McLennan, SM, Bell III, JF, Calvin, WM, Christensen, PR, Clark, BC, de Souza, PA, Farmer, J, Farrand, WH, Fike, DA, Gellert, R, Ghosh, A, Glotch, TD, Grotzinger, JP, Hahn, B, Herkenhoff, KE, Hurowitz, JA, Johnson, JR, Johnson, SS, Jolliff, B, Klingelhöfer, G, Knoll, AH, Learner, Z, Malin, MC, McSween, HY Jr., Pocock, J, Ruff, SW, Soderblom, LA, Squyres, SW, Tosca, NJ, Watters, WA, Wyatt, MB and Yen, A (2005) Provenance and diagenesis of the evaporite-bearing Burns Formation, Meridiani Planum, Mars. Earth and Planetary Science Letters 240, 95121.CrossRefGoogle Scholar
McLoughlin, N, Brasier, MD, Wacey, D, Green, OR and Perry, RS (2007) On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7, 1026.CrossRefGoogle ScholarPubMed
McMahon, S, Bosak, T, Grotzinger, JP, Milliken, RE, Summons, RE, Daye, M, Newman, SA, Fraeman, A, Williford, KH and Briggs, DEG (2018) A field guide to finding fossils on Mars. Journal of Geophysical Research: Planets 123, 10121040.Google ScholarPubMed
Minter, NJ and Braddy, SJ (2006) Walking and jumping with Palaeozoic apterygote insects. Palaeontology 49, 827835.CrossRefGoogle Scholar
Minter, NJ, Braddy, SJ and Davis, RB (2007) Between a rock and a hard place: arthropod trackways and ichnotaxonomy. Lethaia 40, 365375.CrossRefGoogle Scholar
Misra, AK and Acosta-Maeda, TE (2018) Hematite Spherules on Mars. In Al-Juboury, A (ed.), Mineralogy. Significance and Applications. London: IntechOpen's Academic Editors, pp. 119.Google Scholar
Retallack, GJ (2014) Paleosols and paleoenvironments of early Mars. Geology 42, 755758.CrossRefGoogle Scholar
Rizzo, V and Cantasano, N (2009) Possible organosedimentary structures on Mars. International Journal of Astrobiology 8, 267280.CrossRefGoogle Scholar
Seilacher, A (2001) Concretion morphologies reflecting diagenetic and epigenetic pathways. Sedimentary Geology 143, 4157.CrossRefGoogle Scholar
Squyres, SW, Arvidson, RE, Bell III, JF, Brückner, J, Cabrol, NA, Calvin, N, Carr, MH, Christensen, PR, Clark, BC, Crumpler, L, Des Marais, DJ, d'Uston, C, Economou, T, Farmer, J, Farrand, W, Folkner, W, Golombek, M, Gorevan, S, Grant, JA, Greeley, R, Grotzinger, J, Haskin, L, Herkenhoff, KE, Hviid, S, Johnson, J, Klingelhöfer, Knoll AH, Landis, G, Lemmon, M, Li, R, Madsen, MB, Malin, MC, McLennan, SM, McSween, HY, Ming, DW, Moersch, J, Morris, RV, Parker, T, Rice, JW Jr., Richter, L, Rieder, R, Sims, M, Smith, M, Smith, P, Soderblom, LA, Sullivan, R, Wänke, H, Wdowiak, T, Wolff, M and Yen, A (2004) The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars. Science (New York, N.Y.) 306, 16981703.CrossRefGoogle ScholarPubMed
Stack, KM, Grotzinger, JP, Kah, LC, Schmidt, ME, Mangold, N, Edgett, KS, Summer, DY, Siebach, KL, Nachon, M, Lee, R, Blaney, DL, Deflores, LP, Edgar, LA, Fairén, AG, Leshin, LA, Maurice, S, Oehler, DZ, Rice, MS and Wiens, RC (2014) Diagenetic origin of nodules in the Sheepbed member, Yellowknife Bay formation, Gale crater, Mars. Journal of Geophysical Research: Planets 119, 16371664.Google Scholar
Sun, VZ, Stack, KM, Kah, LC, Thompson, L, Fischer, W, Williams, AJ, Johnson, SS, Wiens, RC, Kronyak, RE, Nachon, M, House, CH and VanBommel, S (2018) Late-stage diagenetic concretions in the Murray formation, Gale Crater, Mars. Icarus 321, 866890. doi: 10.1016/j.icarus.2018.12.030.CrossRefGoogle Scholar
Wisshak, M, Knaust, D and Bertling, M (2019) Bioerosion ichnotaxa: review and annotated list. Facies 65, 139.CrossRefGoogle Scholar