No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
Recent observations of the ASCA satellite resulted in the first identification of a GB source (Murakami et al. 1994). This success confirmed the importance of simultaneous observations in different wavelength bands for GB studies. Besides the ASCA results, there were several observations of GBs in X-ray band with the Ginga (Yoshida et al,.1989), V 78/1 (Laros et al. 1984) and other satellites. It became clear that GBs emit 4 - 8% of their energy in the 2 - 10 keV range. The main task now is to have an equipment which will be able to monitor the sky in X-rays in a mode similar to that of GRO observations, i.e. the telescope should have an all-sky field-of-view (FoV) and should work continuously.
A telescope with these features but operating at soft X-ray energies may directly determine the GB distance scale, due to interstellar absorption of the photons with energies less than 2 keV, as was pointed out first by Schaefer (1993). Flaring sources similar to GBs in time scale may be found also in the EUV (hundreds of angstroms) with the help of very wide-field cameras. Of course each such device - in X-ray, soft X-ray and EUV bands - will discover many transient objects, flaring events, will study time variability of bright “stationary” sources etc. In this paper we describe several instrumental approaches in these fields.