Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T02:59:03.649Z Has data issue: false hasContentIssue false

Theoretically Inferred Masses of the White Dwarf Components of Common Nova Systems

Published online by Cambridge University Press:  12 April 2016

James W. Truran*
Affiliation:
Department of Astronomy, University of Illinois at Urbana-Champaign

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Questions concerning the origin and evolution of cataclysmic variables continue to be the subject of considerable inquiry and debate. Significant boundary conditions upon theoretical models may be imposed by our increasing knowledge of the characteristics of specific systems. It is the purpose of this contribution to argue that, within the framework of the thermonuclear runaway model, the classical novae are most reasonably interpreted as systems characterized by relatively massive white dwarf components.

Type
Colloquium Session VII
Copyright
Copyright © The University of Rochester 1979

References

Arp, H. C., 1976, Astr. J., 61, 15.Google Scholar
Bath, G. T. 1978, Mon. Not. R. Astr. Soc, 182, 35.Google Scholar
Bath, G. T. and Shaviv, G. 1976, Mon. Not. R. Astr. Soc, 175, 305.Google Scholar
Becker, S. A. and Iben, I. Jr. 1979, Astrophys. J., in press.Google Scholar
Gallagher, J. S. and Starrfield, S. 1976, Mon. Not. R. Astr. Soc, 176, 53.Google Scholar
Hartwick, F. D. A. and Hutchings, J. B. 1978, Astrophys. J., 226, 203.Google Scholar
Hutchings, J. B. 1979a, “The Cataclysmic Binary HR Del”.Google Scholar
Hutchings, J. B. 1979b, “The Interactive Binary in Nova DQ Herculis”.Google Scholar
Iben, I. Jr. 1977, Astrophys. J., 217, 788.CrossRefGoogle Scholar
Paczynski, B. 1971, Acta Astron., 21, 417.Google Scholar
Prialnik, D., Shara, M. M., and Shaviv, G. 1978, Astr. Astrophys., 62, 339.Google Scholar
Prialnik, D., Shara, M. M., and Shaviv, G. 1979, Astr. Astrophys., 72, 192.Google Scholar
Robinson, E. L. 1975, Astr. J., 80, 515.Google Scholar
Robinson, E. L. 1976, Astrophys. J., 203, 485.Google Scholar
Sparks, W. M., Starrfield, S., and Truran, J. W. 1978, Astrophys. J., 220, 1063.Google Scholar
Starrfield, S., Truran, J. W., and Sparks, W. M. 1978, Astrophys. J., 226, 186.Google Scholar
Starrfield, S., Truran, J. W., Sparks, W. M., and Kutter, G. S. 1972, Astrophys. J., 176, 169.Google Scholar
Taam, R. 1979, Astrophys. J., in press.Google Scholar
Taam, R. and Faulkner, J. 1975, Astrophys. J., 198, 435.Google Scholar
Truran, J. W. 1979a, these proceedings.Google Scholar
Truran, J. W. 1979b, “The Early Development of Fast Nova Light Curves”.Google Scholar
Truran, J. W., Starrfield, S., Strittmatter, P. A., Wyatt, S. P., and Sparks, W. M. 1977, Astrophys. J., 211, 539.Google Scholar
Warner, B. 1973, Mon. Not. R. Astr. Soc, 162, 189.Google Scholar
Webbink, R. W. and Gallagher, J. S. 1979, private communication.Google Scholar
Wu, C.-C. and Rester, D. 1977, Astron. Astrophys., 58, 331.Google Scholar