No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
AE Aqr is a close non-eclipsing binary system with an orbital period Porb ≈ 9.88 hr, eccentricity of the orbit e = 0.02 (Chincarini & Walker 1981) and a mass ratio q = 1.14 (Reinsch & Beuermann 1994), situated at the distance of ∼ 84 pc (Van Paradijs et al. 1989). The secondary is K3 red dwarf on or close to the main sequence (Bruch 1991). The primary cannot be observed directly. However, the stable photometric oscillations at a period of 33 s (and at half this period) in the optical (Patterson 1979), UV (Eracleous et al. 1994), X-rays (Patterson et al. 1980) and, probably, VHE γ-rays (Meintjes et al. 1992, Bowden et al. 1992) leave no doubt that the primary is a rapidly rotating magnetized compact object. The observed rate of deceleration of the primary rotation is Ṗ = 5.64 × 10−14 ss−1 (De Jager et al. 1994), and its mass is m1sin3i (0.56 ± 0.03) M⊙ (Reinsch & Beuermann 1994). The lack of eclipses allows to put a lower limit to the mass of the primary m1 ≥ 0.62M⊙.
AE Aqr emits detectable radiation in all parts of the electromagnetic spectrum. In radio and γ-rays it is a powerful non-thermal source. However, in the optical, UV and X-rays the radiation is likely to be thermal and can be well explained by gas accretion onto a compact star (Patterson 1979, Patterson et al. 1980). The observed impulse profile of the pulsating component (Eracleous et al. 1994) looks similar to that of the accreting X-ray pulsars.