Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T03:36:47.509Z Has data issue: false hasContentIssue false

Near-Infrared Emission Lines in AGNs

Published online by Cambridge University Press:  12 April 2016

A. Krabbe*
Affiliation:
Max-Planck-Institut für Extraterrestrische Physik, D-85740 Garching, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Near-infrared high-resolution imaging and spectroscopic observations of NGC 7469, Mrk 231, IRAS F10214+4724, and Circinus are presented. They indicate the presence of extended star-forming activity in the vicinity of the active nuclei of these galaxies on scales between 10 pc and 1 kpc from the nuclei. The very different distance scales covered by these objects show that the coexistence of AGN and star-formation activity is a common phenomenon. A first-order evolving star-cluster model calculation shows that we are beginning to understand the history and evolution of these circumnuclear star-forming regions.

Type
VI. The Narrow-Line Regions and Beyond
Copyright
Copyright © Astronomical Society of the Pacific 1997

References

Broadhurst, T., & Lehár, J. 1995, ApJ, 450, L41.Google Scholar
Bryant, P.M., & Scoville, N.Z. 1996, ApJ, 457, 678.Google Scholar
Dowries, D., Solomon, P.M., & Radford, S.J.E. 1993, ApJ, 414, L13.Google Scholar
Downes, D., Solomon, P.M., & Radford, S.J.E. 1995, ApJ, 453, L65.Google Scholar
Eisenhardt, P.R., et al. 1996, ApJ, 461, 72.Google Scholar
Elston, R., et al. 1994, AJ, 107, 910.Google Scholar
Genzel, R., et al. 1995, ApJ, 444, 129.Google Scholar
Graham, J.R., & Liu, M.C. 1995, ApJ, 449, L29.Google Scholar
Helfer, T.T., & Blitz, L. 1995, ApJ, 450, 90.Google Scholar
Hofmann, R., et al. 1993, in Progress in Telescope and Instrumentation Technologies, ed. Ulrich, M.-H. (ESO 42), (Garching: ESO), p. 617.Google Scholar
Krabbe, A., et al. 1995, in Infrared Imaging Systems, Proc. of SPIE, Vol. 2457, p. 172.Google Scholar
Krabbe, A., Sternberg, A., & Genzel, R. 1995, ApJ, 425, 72.Google Scholar
Krabbe, A., et al. 1997, ApJ, 476, in press.CrossRefGoogle Scholar
Kroker, H., et al. 1996, ApJ, 463, L55.Google Scholar
Lipari, S., Colina, L., & Machetto, F.D. 1994, ApJ, 427, 174.CrossRefGoogle Scholar
Maeder, A., & Meynet, G. 1988, A&AS, 76, 411.Google Scholar
Mazzarella, J.M., et al. 1994, AJ, 107, 1274.Google Scholar
Miles, J.W., Houck, J.R., & Hayward, T.L. 1994, ApJ, 425, L37.Google Scholar
Roche, P., et al. 1991, MNRAS, 248, 606.Google Scholar
Rowan-Robinson, M., et al. 1993, MNRAS, 261, 513.Google Scholar
Schaerer, D., et al. 1993, A&A, 174, 1012.Google Scholar
Scovine, N.Z., et al. 1995, ApJ, 449, L109.Google Scholar
Tacconi, L.J., et al. 1994, ApJ, 426, L77.Google Scholar
Tacconi, L.J., et al. 1996, ApJ, submitted.Google Scholar
Thatte, N., et al. 1997, in preparation.Google Scholar
Thatte, N., et al. 1995, in Progress in Telescope and Instrumentation Technologies, ed. Ulrich, M.-H. (ESO 42), (Garching: ESO), p. 228.Google Scholar
Thronson, H.A. Jr., et al. 1989, ApJ, 343, 158.Google Scholar
Weitzel, L., et al. 1996, A&AS, in press.Google Scholar
Wilson, A.S., et al. 1991, ApJ, 381, 79.Google Scholar