Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T00:08:23.927Z Has data issue: false hasContentIssue false

Modelling Very-High-Eccentricity Asteroidal Librations with the Andoyer Hamiltonian

Published online by Cambridge University Press:  12 April 2016

A. Simula
Affiliation:
Instituto Astronômico e Geofísico. Universidade de São Paulo Av. Miguel Stéfano 4200, São Paulo, SP, Brazil
S. Ferraz-Mello
Affiliation:
Instituto Astronômico e Geofísico. Universidade de São Paulo Av. Miguel Stéfano 4200, São Paulo, SP, Brazil
C. Giordano
Affiliation:
Universid Nacional de La Plata- La Plata, Argentina

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-eccentricity asteroidal librations are modelled using the high-eccentricity non-planar asymmetric expansion (Roig et al 1997). This second-degree expansion gives us the potential of the perturbing forces acting on a resonant asteroid in a first order resonance in explicit form, as a quadratic polynomial in the canonical non-singular variables. Secular and short periodic perturbations are introduced in the model, giving a more realistic description of the dynamics.

The reducing Sessin’s transformation (Sessin, 1981; Sessin & Ferraz-Mello, 1984) is used to include the main effect of Jupiter’s ecc entricity in the main part of the Hamiltonian. It leads to an integrable first-order approximation known as the second fundamental model for resonance (Henrard & Lemaitre 1983) or Andoyer Hamiltonian (Andoyer 1903).

Type
Extended Abstracts
Copyright
Copyright © Kluwer 1999

References

Andoyer, H.: 1903, Bulletin Astronomique, 20, 321356 CrossRefGoogle Scholar
Henrard, J., Lemaitre, A.: 1983, ‘A second fundamental model for resonance’. Cel. Mech. Dyn. Astr., 30, 197218.CrossRefGoogle Scholar
Henrard, J.: 1990, ‘A semi-numerical perturbation method for separable Hamiltonian systems’, Cel. Mech. Dyn. Astr., 49, 4367.CrossRefGoogle Scholar
Henrard, J., Lemaitre, A.: 1986, ‘A semi-numerical perturbation method for problems with two critical arguments’. Cel. Mech. Dyn. Astr., 39, 213238.CrossRefGoogle Scholar
Roig, F., Simula, A., Ferraz-Mello, S. and Tsuchida, M.: 1997, ‘The high-eccentricity asymmetric expansion of the disturbing function for non-planar resonant problems’, Astron. Astrophys., (in press).Google Scholar
Sessin, W.: 1981, ’Estudo de um Sistema de dois Planetas com Periodos commensurav eis’, Ph.D. Thesis, IAG-USP.Google Scholar
Sessin, W., Ferraz-Mello, S.: 1984, ’Motion of two planets with periods commensurable in the ratio 2:1. Solutions of the Hori auxiliar system’, Cel. Mech. Dyn. Astr., 32, 307332.CrossRefGoogle Scholar