Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-12T10:35:41.407Z Has data issue: false hasContentIssue false

Mean Orbital Motion of Geodetic Satellites and its Applications

Published online by Cambridge University Press:  12 April 2016

P. Exertier
Affiliation:
Observatoire de la Côte d’Azur, CERGA Grasse, France
G. Métris
Affiliation:
Observatoire de la Côte d’Azur, CERGA Grasse, France
S. Bruinsma
Affiliation:
Observatoire de la Côte d’Azur, CERGA Grasse, France
F. Barlier
Affiliation:
Observatoire de la Côte d’Azur, CERGA Grasse, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Averaging methods are convenient tools for studying long-periodic variations of the motion of artificial satellites. The main lines of a semi-analytical theory of the mean motion are given. We show how, when coupled with a careful reduction of the tracking data, this theory allows to determine parameters related to the temporal variations of the Earth gravity field (e.g. the amplitude of 18.6 years tide and the secular variation of even zonal harmonics). The theory is also very useful for other applications such as mission analysis.

Type
Dynamics of Artificial Satellites and Space Debris
Copyright
Copyright © Kluwer 1997

References

Barlier, F., et al.: 1978, “A thermospheric model based on satellite drag data”, Aerono-mica Acta A 185.Google Scholar
Berger, Ch., Biancale, R. III, and Barlier, F.: 1996, “Improvement of the empirical thermospheric model DTM: DTM94. Comparative review on various temporal variations and prospects in space geodesy applications”, J. Geod., submitted.Google Scholar
Brouwer, D.: 1959, “Solution of the problem of artificial satellite theory without drag”, Astron. J. 64, 378397.CrossRefGoogle Scholar
Brown, G.M.: 1992, “The peak of solar cycle 22: Prediction in retrospect”, Ann. Geophys. 10, 453461.Google Scholar
Bruinsma, S.L., Exertier, P., and Barlier, F.: 1996, “Long arc computation for low-orbiting satellites”, European Geophysical Society XXIe General Assembly - Symposium G13, The Hague, The Netherlands.Google Scholar
Deprit, A.: 1969, “Canonical transformations depending on a small parameter”, Ce-lest. Mech. 1, 1230.Google Scholar
Deprit, A. and Rom, A.: 1970, “The main problem of artificial satellite theory for small and moderate eccentricities”, Celest. Mech. 2, 166206.Google Scholar
Eanes, R.J.: 1995, “A study of temporal variations in Earth’s gravitational field using Lageos-1 laser range observations”, CSR-95-7, Center for Space Research, University of Texas, Austin.Google Scholar
Exertier, P.: 1988, Orbitographie des Satellites Artificiels sur de Grandes Périodes de Temps: Possibilitiés d’Applications, Thesis (in French).Google Scholar
Exertier, P.: 1990, “Precise determination of mean orbital elements from osculating elements by semi-analytical filtering”, Manuscr. Geod. 15, 115123.Google Scholar
Exertier, P., Métris, G., Boudon, Y., and Barlier, F.: 1995, “Simultaneous determination of the 18.6 year ocean tide and J2 from the mean orbital motion of Lageos”, XXIe General Assembly I.U.G.G. - Symposium G3, Boulder, Colorado.Google Scholar
Gegout, P. and Cazenave, A.: 1993, “Temporal variations of the Earth’s gravity field for 1985-1989 derived from Lageos”, Geophys. J. Int. 114, 347359.CrossRefGoogle Scholar
Hedin, A.E.: 1987, “MSIS-86 thermospheric model”, J. Geophys. Res. 92(A5), 46494662.Google Scholar
Marshall, J.A., Klosko, S.M., and Ries, J.C.: 1995, “Dynamics of SLR tracked satellites”, Rev. Geophys., Suppl. 353360.CrossRefGoogle Scholar
Métris, G.: 1991, Théorie du Mouvement du Satellite Artificiel: Développement des Equations du Mouvement Moyen, Application à l’Etude des Longues Périodes, Thesis (in French).Google Scholar
Métris, G. and Exertier, P.: 1995, “Semi-analytical theory of the mean orbital motion”, Astron. Astrophys. 294, 278286.Google Scholar
Métris, G., Vokrouhlický, D., Ries, J.C., and Eanes, R.J.: 1996, “Non-gravitational effects and the Lageos eccentricity excitations”, J. Geophys. Res., in press.Google Scholar
Moons, M.: 1993, “Averaging approaches”, in: Proceedings of Artificial Satellite Theory Workshop, U.S.N.O Washington D.C. (USA).Google Scholar
Schwintzer, P., Reigber, Ch., Bode, A., Kang, Z., Zhu, S.Y., Massmann, F.-H., Raimondo, J.C., Biancale, R., Balmino, G., Lemoine, J.M., Moynot, B., Marty, J.C., Barlier, F., and Boudon, Y.: 1996, “Long-wawelength global gravity field models: GRIM4-S4, GRIM4-C4”, J. Geod., in press.Google Scholar
Tapley, B.D., et al.: 1994, “The JGM3 gravity model”, Annales Geophysicae 12, Suppl. 1, C192.Google Scholar
Wagner, C.A.: 1973, “Zonal gravity harmonics from satellite long arcs by seminumerical method”, J. Geophys. Res. 78, 32713280.Google Scholar