Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-03T08:32:53.039Z Has data issue: false hasContentIssue false

IRAS Galaxies

Published online by Cambridge University Press:  12 April 2016

N. Scoville*
Affiliation:
Owens Valley Radio Observatory, California Institute of Technology

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Approximately thirty of the luminous infrared galaxies highlighted by the IRAS survey have now been mapped at high resolution using the millimeter arrays. In virtually all cases, extremely high gas concentrations are found in their nuclei (≤2 kpc) and in several cases, the gas mass fraction is extremely high (25-100%). Optical and near infrared imaging of the most luminous infrared galaxies shows significant distortions, double nuclei, and/or tidal tails indicating that these galaxies have probably undergone a recent galactic interaction. The dense molecular gas probably plays a pivotal role in the evolution of such dynamically disturbed systems: being dissipative the gas readily sinks to the central regions where it may fuel a nuclear starburst and possibly build up and fuel a central active galactic nucleus. In this picture, the IRAS galaxies may be crudely characterized by three parameters: the initial mass of ISM in the progenitor galaxies, the time since the interaction, and the fraction of the total luminosity attributed to young stars versus an active nucleus. In this scenario, systems such as the antennae (NGC 4038/39) may represent the early stages of a merger before the gas has been deposited in the nucleus; Arp 220 the phase in which a large nuclear gas concentration is presently fueling a starburst/AGN, and NGC 1068 the later phase in which much of the central gas concentration has been consumed and the residual gas exists in a circumnuclear ring or arms.

Type
3. Astronomical Results and Prospects
Copyright
Copyright © Astronomical Society of the Pacific 1994

References

Antonucci, R.R.J. and Miller, J.S. 1985, Ap.J., 297, 621.Google Scholar
Carico, D.P., Graham, J.R., Matthews, K., Wilson, T.D., Soifer, B.T., Neuge-bauer, G., and Sanders, D.B. 1990, Ap.J. (Letters), 349, L39.CrossRefGoogle Scholar
Elmegreen, B.G. and Lada, C.J. 1977, Ap.J., 214, 725.Google Scholar
Graham, J.R., Carico, D.P., Matthews, K., Neugebauer, G., Soifer, B.T., and Wilson, T.D. 1990, Ap.J. (Letters), 354, L5.Google Scholar
Harwit, M., Houck, J.R., Soifer, B.T., and Palumbo, G.G.C. 1986, Ap.J., 315, 28.Google Scholar
Irwin, J.A. and Seaquist, E.R. 1988, Ap.J., 335, 658.Google Scholar
Joseph, R.D., Wright, G.S., and Wade, R. 1984, Nature, 311, 132.Google Scholar
Kikumoto, T., Tanigushi, Y., Suzuki, M., and Tomisada, K. 1992Millimeter and Submilllimeter Interferometry”, ASP Conference Series (in press).Google Scholar
Meixner, M., Puchalsky, , Blitz, L., Wright, M., and Heekman, T. 1990, Ap.J., 354, 158.CrossRefGoogle Scholar
Norman, C.A. and Scoville, N.Z. 1988, Ap.J., 332, 124.Google Scholar
Norris, R.P. 1988 M.N.R.A.S., 320, 345.CrossRefGoogle Scholar
Okumura, S.K., Kawabe, R., Ishiguro, M., Kasuga, T., Morita, K.I., and Ishizuki, S. 1991, IAU Symposium No. 146, “Dynamics of Galaxies and their Molecular Distributions”, ed. Combes, F. (Dordrecht: Kluwer), 425.Google Scholar
Planesas, P., Mirabel, I.F., and Sanders, D.B. 1991, Ap.J., 370, 172.CrossRefGoogle Scholar
Planesas, P., Scoville, N.Z., and Myers, S.T. 1991, Ap.J., 369, 364.Google Scholar
Radford, S.J.E., Delannoy, J., Downes, D., Guelin, M., Guilloteau, S., Greve, A., Lucas, R., Morris, D., and Wink, J. 1991, IAU Symposium No. 146, “Dynamics of Galaxies and their Molecular Distributions”, ed. Combes, F. (Dordrecht:Kluwer), 303.Google Scholar
Sanders, D.B., Scoville, N.Z., Sargent, A.I., and Soifer, B.T. 1988a Ap.J. (Letters), 324, L55.Google Scholar
Sanders, D.B., Scoville, N.Z., and Soifer, B.T. 1991, Ap.J., 370, 158.Google Scholar
Sanders, D.B., Soifer, B.T., Elias, J.H., Madore, B.F., Matthews, K., Neuge-bauer, G., and Scoville, N.Z. 1988, Ap.J., 325, 74.Google Scholar
Sargent, A.I. and Scoville, N.Z. 1991, Ap.J. (Letters), 366, LI.Google Scholar
Scoville, N.Z. and Good, J.C. 1989, Ap.J., 339, 149.Google Scholar
Scoville, N.Z., Matthews, K., Carico, D.P., and Sanders, D.B. 1988, Ap.J. (Letters), 327, L61.Google Scholar
Scoville, N.Z., Sanders, D.B., and Clemens, D.P. 1986, Ap.J. (Letters), 310, L77.CrossRefGoogle Scholar
Scoville, N.Z., Sanders, D.B., Sargent, A.I., Soifer, B.T., and C.G., Tinney 1989, Ap.J. (Letters), 345, L25.CrossRefGoogle Scholar
Scoville, N.Z., Sargent, A.I., Sanders, D.B., and Soifer, B.T. 1991, Ap.J. (Letters), 306, L5.Google Scholar
Soifer, B.T., Sanders, D.B., Madore, B.F., Neugebauer, G., Danielson, G.E., Elias, J.H., Lonsdale, C.J., and Rice, W.L. 1987, Ap.J., 320, 238.CrossRefGoogle Scholar
Solomon, P.M., Radford, S.J.E., and Downes, D. 1990, Ap.J. (Letters), 348, L53.Google Scholar
Stanford, S.A., Sargent, A.I., Sanders, D.B., and Scoville, N.Z. 1990, Ap.J. 349, 492.Google Scholar
Tilanlus, R.P. and Veilleux, 1992, (in preparation).Google Scholar
Wang, Z., Scoville, N.Z., and Sanders, D.B. 1991, Ap.J., 368, 112.Google Scholar