Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T04:00:45.003Z Has data issue: false hasContentIssue false

The Ionization of Novae Ejecta

Published online by Cambridge University Press:  12 April 2016

R.E. Williams*
Affiliation:
Cerro Tololo Inter-American Observatory, Casilla 603, La Serena, CHILE

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Novae ejecta pass through four distinct phases of evolution of the emission-line spectrum, caused by different ionization characteristics of the shell. These include a neutral (I), an auroral (II), a coronal (III), and a nebular (IV) phase. Photoionization from the contracting photosphere of the hot white dwarf is the source of the ionization, including the highly ionized coronal phase. Changing emission line ratios in certain novae that develop dust are caused by condensation of grains from the gas, and can be used to determine the composition of the dust. In V1370 Aql, substantial silicate grain formation appears to have taken place, probably within the ionized gas.

Type
2. Models of Observations
Copyright
Copyright © Springer-Verlag 1990

References

Bath, G.T., and Shaviv, G. 1976, MNRAS. 175, 305.CrossRefGoogle Scholar
Bode, M.F., Evans, A., Whittet, D.C.B., Aitken, D.K., Roche, P.F., and Whitmore, B. 1984, MNRAS, 207, 897.CrossRefGoogle Scholar
Cohen, J.G., and Rosenthal, A.J. 1983, Ap.J., 268, 689.CrossRefGoogle Scholar
Ferland, G.J., and Shields, G.A. 1978, Ap.J., 226, 172.CrossRefGoogle Scholar
Gehrz, R.D. 1988, Ann. Rev. Astr. Ap., 26, 377.CrossRefGoogle Scholar
Gehrz, R.D., Ney, E.P., Grasdalen, G.L., Hackwell, J.A., and Thronson, H.A. 1984, Ap.J., 281, 303.CrossRefGoogle Scholar
Grasdalen, G.L., and Joyce, R.R. 1976, Nature, 259, 187.CrossRefGoogle Scholar
Greenhouse, M.A., Grasdalen, G.L., Hayward, T.L., Gehrz, R.D., and Jones, T.J. 1987, Astron.J., 95, 172.CrossRefGoogle Scholar
Jefferies, J.T., Orrall, F.Q., and Zirker, J.B. 1971, Solar Phys., 16, 103.CrossRefGoogle Scholar
Krautter, J. et al. 1984, Astr.Ap., 137, 307.Google Scholar
Krautter, J., and Williams, R.E. 1989, Ap.J., 341, in press.CrossRefGoogle Scholar
MacDonald, J., Fujimoto, M.Y., and Truran, J.W. 1985, Ap.J., 294, 263.CrossRefGoogle Scholar
Magnant-Crifo, F. 1973, Solar Phys., 31, 91.CrossRefGoogle Scholar
Mason, H.E., and Nussbaumer, H. 1977, Astr.Ap., 54, 547.Google Scholar
McLaughlin, D.B. 1953, Ap.J., 118, 27.CrossRefGoogle Scholar
Osterbrock, D.E. 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Mill Valley: University Science), p. 21.Google Scholar
Prialnik, D. 1986, Ap.J., 310, 222.CrossRefGoogle Scholar
Roche, P.F., Aitken, D.K., Whitmore, B. 1984, MNRAS, 211, 535.CrossRefGoogle Scholar
Rosino, L., Iijima, T., and Ortolani, S. 1983, MNRAS, 205, 1069.CrossRefGoogle Scholar
Snijders, M.A.J., Batt, T.J., Roche, P.F., Seaton, M.J., Morton, D.C., Spoelstra, T.A.T., and Blades, J.C. 1987, MNRAS, 228, 329.Google Scholar
Sparks, W.M., Starrfield, S.G., and Truran, J.W. 1978, Ap.J., 220, 1063.CrossRefGoogle Scholar
Starrfield, S.G., and Snijders, M.A.J. 1987, in Exploring the Universe with the IUE Satellite, ed. Kondo, Y. (Dordrecht:Reidel), p. 377.CrossRefGoogle Scholar
Starrfield, S.G., Truran, J.W., Sparks, W.M., and Krautter, J. 1989, in EUV Astronomy, ed. Malina, R. (in press).Google Scholar
Stickland, D.J., Penn, C.J., Seaton, M.J., Snijders, M.A.J., and Storey, P.J. 1981, MNRAS, 197, 107.CrossRefGoogle Scholar
Strittmatter, P.A. et al. 1977, Ap.J., 216, 23.CrossRefGoogle Scholar
Williams, P.M., and Longmore, A.J. 1984, MNRAS, 207, 139.CrossRefGoogle Scholar
Williams, R.E., Ney, E.P., Sparks, W.M., Starrfield, S.G., Wyckoff, S., and Truran, J.W. 1985, MNRAS, 212, 753.CrossRefGoogle Scholar
Zanstra, H. 1931, Pub. Dom. AP. Obs, 4, 209.Google Scholar