Published online by Cambridge University Press: 12 April 2016
When gas is accreted onto a carbon-oxygen white dwarf, a hydrogen shell-flash is triggered. Recently such phenomena are studied by many authors in relation to nova explosions and rekindling of white dwarfs. Unless all of the accreted gas is ejected by the process of the nova, a helium zone is formed as a result of hydrogen shell-burning. As the hydrogen shell-flashes recur many times, the helium zone grows gradually in mass. Then the helium shell-flash will be ignited as in the deep interior of ordinary red giant stars. We have investigated such process, simulating it by helium accretion at a constant rate. In the present paper we show that the helium shell-flashes result in a variety of strengths depending upon situations.