No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
AE Aquarii is a magnetic cataclysmic variable containing a white dwarf and a K3-K7 star which lies slightly above the main sequence. The white dwarf is the most rapidly rotating known (Prot ≃ 33.08 s, Patterson 1979), and it is the most strongly asynchronous with its revolution (Porb = 9.88 hr). The white dwarf accretes matter from the K star, which approximately fills the Roche lobe. AE Aqr exhibits flares in the soft X-rays, the ultra-violet, and almost continuously in the visible and the radio regimes. Rapid optical and TeV γ-ray bursts have also been discovered, which are modulated with the period of the white dwarf and at half of this period (de Jager & Meintjes 1993). This modulation, also found in X-rays, is interpreted as the accretion of matter onto the white dwarf’s magnetic poles. The strength of the white dwarf’s magnetic field is not well-determined, it is estimated to be ∼ 6.104 - 105 G (Lamb & Patterson 1983, Cropper 1986) at the white dwarf’s surface. Eracleous et al. (1994) recently suggested that the magnetic dipole axis lies close to the equatorial plane (∼ 20°). De Jager et al. (1994) discovered a rapid spin down of the white dwarf leading to a spin down power which exceeds the accretion power. They suggest that a significant fraction of the spin down power may be converted to the acceleration of particles, which may explain the radio and the γ-ray emissions. Both the characteristics of the optical flares and the existence of TeV γ-rays suggest a relation with the non-thermal radio flares.