Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-06T01:55:57.489Z Has data issue: false hasContentIssue false

Determination of Initial Eigenorbits for Asteroids

Published online by Cambridge University Press:  12 April 2016

Karri Muinonen
Affiliation:
Observatory, University of Helsinki, Helsinki, Finland
Andrea Milani
Affiliation:
Department of Mathematics, University of Pisa, Pisa, Italy
Edward Bowell
Affiliation:
Lowell Observatory, Flagstaff, Arizona, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider initial determination of asteroid orbits in the case of small numbers of observations and short observational arcs. For asteroids having long arcs, we can assess the orbital uncertainties with the help of the covariance matrix that, in the phase space of the orbital elements, defines a set of probability ellipsoids. In initial orbit determination, because of the nonlinear characteristics and multiple solutions of the inversion problem, we cannot readily use the covariance matrix to estimate the orbital uncertainties. However, by computing the eigenvalues and eigenvectors of the formal correlation matrix (that is, by deriving the eigenorbits), we can discern the most indeterminate orbital elements. Here we solve the eigenproblem for 17 single-apparition asteroids.

Type
Solar System Dynamics
Copyright
Copyright © Kluwer 1997

References

Bailey, M.E., Emel’yanenko, V.V., Hahn, G., Harris, N.W., Hughes, K.A., Muinonen, K., and Scotti, J.V.: 1996, “Orbital evolution of Comet 1995 01 Hale-Bopp”, Mon. Not. R. Astron. Soc. 281, 916924.Google Scholar
Bowell, E., Skiff, B.A., Wasserman, L.H., and Russell, K.S.: 1990, “Orbital information from asteroid motion vectors”, in: Asteroids, Comets, Meteors III (Lagerkvist, C.-I., Rickman, H., Lindblad, B.A., Lindgren, M., eds), Uppsala Universitet, 1924.Google Scholar
Carpino, M., and Knežević, Z.:, 1996, “Determination of the mass of (1) Ceres from close approaches of other asteroids”, in: Dynamics, Ephemerides, and Astrometry of Solar System Bodies, IAU Symposium 172 (Ferraz-Mello, S., Morando, B., Arlot, J.E., eds), Kluwer, Dordrecht, 203206.Google Scholar
Dubyago, A.D.: 1961, The Determination of Orbits, The MacMillan Company.Google Scholar
Jedicke, R.: 1996, “Detection of near-Earth asteroids based upon their rates of motion”, Astron. J. 111, 970982.Google Scholar
Marsden, B.G.: 1991, “The computation of orbits in indeterminate and uncertain cases”, Astron. J. 102, 15391552.Google Scholar
Milani, A., Carpino, M., Rossi, A., Catastini, G., and Usai, S.: 1995, “Local geodesy by satellite laser ranging: An European solution”, Manuscr. Geod. 20, 123138.Google Scholar
Muinonen, K.: 1996, “Orbital covariance eigenproblem for asteroids and comets”, Mon. Not. R. Astron. Soc. 280, 12351238.Google Scholar
Muinonen, K., and Bowell, E.: 1993, “Asteroid orbit determination using Bayesian probabilities”, Icarus 104, 255279.Google Scholar
Muinonen, K., Bowell, E., and Wasserman, L.H.: 1994, “Orbital uncertainties of single-apparition asteroids”, Planet. Space Sci. 42, 307313.Google Scholar
Väisälä, Y.: 1939, “Eine einfache Methode der Bahnbestimmung”, Mitt. Sternw. Univ. Turku, Suomalainen Tiedeakatemia, 1, 132.Google Scholar