Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T05:12:07.129Z Has data issue: false hasContentIssue false

DEM Analyses with the Utrecht Codes

Published online by Cambridge University Press:  12 April 2016

R. Mewe
Affiliation:
SRON Laboratory for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
G.H.J. van den Oord
Affiliation:
Sterrekundig Instituut Utrecht, P.O. Box 80 000, 3508 TA Utrecht, The Netherlands
C.J. Schrijver
Affiliation:
Stanford/Lockheed Inst. for Astrophys. and Space research, LPARL, Dept. 91-30, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304-1191, USA
J.S. Kaastra
Affiliation:
SRON Laboratory for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We address the inversion problem of deriving the differential emission measure (DEM) distribution D(T) = nenHdV/d log T from the spectrum of an optically thin plasma. In the past we have applied the iterative Withbroe-Sylwester technique and the Polynomial technique to the analysis of EXOSAT spectra of cool stars, but recently we have applied the inversion technique discussed by Craig & Brown (1986) and Press et al. (1992) in the analysis of EUVE spectra of cool stars. The inversion problem-a Fredholm equation of the first kind-is ill-posed and solutions tend to show large, unphysical oscillations. We therefore apply a second-order regularization, i.e., we select the specific DEM for which the second derivative is as smooth as is statistically allowed by the data. We demonstrate the importance of fitting lines and continuum simultaneously, discuss the effect on the DEM of continuum emission at temperatures where no line diagnostics are available, and address possible ways to check various model assumptions such as abundances and photon destruction induced by resonant scattering.

Type
XIII. Plasma Diagnostics
Copyright
Copyright © Kluwer 1996

References

Anders, E. & Grevesse, N. 1989, Geochimica et Cosmochimica Acta, 53, 197 Google Scholar
Bowyer, S. & Malina, R.F. 1991, in Extreme Ultraviolet Astronomy, ed. Malina, R.F. & Bowyer, S., New York: Pergamon Press, 397 CrossRefGoogle Scholar
Craig, I.J.D. & Brown, J.C. 1986, Inverse Problems in Astronomy., Adam Hilger Ltd.Google Scholar
Drake, S.A., Singh, K.P., White, N.E. & Simon, T. 1994, ApJ, 436, L87 CrossRefGoogle Scholar
Dupree, A.K., Brickhouse, N.S., Doschek, G.A. et al., 1993, ApJ, 418, L41 CrossRefGoogle Scholar
Kaastra, J.S. & Mewe, R. 1993, Legacy, 3, 16 Google Scholar
Lemen, J.R., Mewe, R., Schrijver, C.J. & Fludra, A. 1989, ApJ, 341, 474 CrossRefGoogle Scholar
Mewe, R. & Kaastra, J.S. 1994, European Astron. Soc. Newsletter, Issue 8, 3 Google Scholar
Mewe, R., Gronenschild, E. & Van Den Oord, G. 1985, A&AS, 62, 197 Google Scholar
Mewe, R., Kaastra, J.S., Schrijver, C.J. et al., 1995, A&A, 296, 477 Google Scholar
Mewe, R., Lemen, J.R. & Van Den Oord, G.H.J. 1986, A&AS, 65, 551 Google Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. 1992, Numerical Recipes, Cambridge University Press Google Scholar
Rucinski, S.M., Mewe, R., Kaastra, J.S. et al., 1995, ApJ, in pressGoogle Scholar
Rumph, T., Bowyer, S., & Vennes, S. 1994, AJ, 107, 2108 CrossRefGoogle Scholar
Schrijver, C.J., Mewe, R., Van Den Oord, G.H.J. et al., 1995, A&A, in pressGoogle Scholar
Stern, R.A., Lemen, J.R., Schmitt, J.H.M.M. et al., 1995, ApJL, in pressGoogle Scholar
Sylwester, J., Schrijver, J. & Mewe, R. 1980, Solar Phys., 67, 285 CrossRefGoogle Scholar
Thompson, A.M. 1991, In Intensity Integral Inversion Techniques: a Study in prereparation for the SOHO Mission, ed. Harrison, R.A. & Thompson, A.M.,. Rutherford Appleton Lab Rep. RAL-91, 18CrossRefGoogle Scholar
Withbroe, G.L. 1975, Solar Phys., 45, 301 CrossRefGoogle Scholar