Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T03:23:04.876Z Has data issue: false hasContentIssue false

Convective Overshooting and The Observed Width of The Main-Sequence Band

Published online by Cambridge University Press:  12 April 2016

R. Napiwotzki
Affiliation:
Institut für theoretische Physik und Sternwarte der Universität Kiel Olshausenstr. 40, W-2300 Kiel, Germany
A. Rieschick
Affiliation:
Institut für theoretische Physik und Sternwarte der Universität Kiel Olshausenstr. 40, W-2300 Kiel, Germany
T. Blöcker
Affiliation:
Institut für theoretische Physik und Sternwarte der Universität Kiel Olshausenstr. 40, W-2300 Kiel, Germany
D. Schönberner
Affiliation:
Institut für theoretische Physik und Sternwarte der Universität Kiel Olshausenstr. 40, W-2300 Kiel, Germany
V. Wenske
Affiliation:
Institut für theoretische Physik und Sternwarte der Universität Kiel Olshausenstr. 40, W-2300 Kiel, Germany

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For many years we are witnessing a lively debate on the existence and extent of convective overshooting, mainly in the cores of main-sequence stars. This is an important issue, since even a small amount of overshooting increases considerably the mass of the finally hydrogen exhausted core and lenghthens the main-sequence lifetime correspondingly. The available evolutionary calculations assume either moderate overshooting, d/Hp = 0.25, (d = overshooting distance, Hp = pressure scale height; Maeder & Meynet 1988) or strong overshooting, d/Hp ≈ 0.50 (Bertelli et al. 1986). Presently theory is unable to quantify the exact amount of overshooting, and one has to resort to empirical determinations.

Recently, Stothers (1991) collected all available information from the literature on stellar parameters and evolutionary calculations and concluded that, within the errors, d/Hp = 0 is an acceptable result, with a conservative upper limit of d/Hp < 0.2. However, such an approach is hampered by observational errors (like distance or temperature uncertainties, rotation) that are difficult to quantify and that may mask any definitive result. Detailed investigations of detached binaries may help in this matter (Andersen et al. 1990) but the number of suitable binary systems is probably not very large.

Type
V. The changing interior
Copyright
Copyright © Astronomical Society of the Pacific 1993

References

Andersen, J., Nordström, B. Clausen, J.V., 1990, ApJ 363, L33 CrossRefGoogle Scholar
Bertelli, G., Bressan, A., Chiosi, C., Angerer, K., 1986, A&AS 66, 191 Google Scholar
Cox, A.N., Stewart, J.N., 1970, ApJS 19, 243 CrossRefGoogle Scholar
Crawford, D.L., Mander, J., 1966, AJ 71, 114 CrossRefGoogle Scholar
Huebner, W.F., Merts, A.L., Magee, N.H. Jr., Arog, M.F., 1977, Los Alamos Scientific Laboratory Rept., No. LA-670-MGoogle Scholar
Iglesias, C.A., Rogers, F.J., 1991, ApJ 371, L73 CrossRefGoogle Scholar
Lemke, M., 1989, A&A 225, 125 Google Scholar
Maeder, A., Meynet, G., 1988, A&AS 76, 411 Google Scholar
Moon, T.T., Dworetsky, M.M., 1985, MNRAS 217, 305 CrossRefGoogle Scholar
Napiwotzki, R., Schönberner, D., Weidemann, V., 1991, A&A 243, L5 Google Scholar
Napiwotzki, R., Schönberner, D., Wenske, V., 1992, A&A in pressGoogle Scholar
Schönberner, D., 1979, A&A 79, 108 Google Scholar
Schönberner, D., 1983, ApJ 272, 708 CrossRefGoogle Scholar
Stothers, R.B., 1991, ApJ 383, 820 CrossRefGoogle Scholar
Wenske, V., Schönberner, D., 1992, these proceedingsGoogle Scholar
Wolff, S.C., 1990, AJ 100, 1994 CrossRefGoogle Scholar