Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T04:35:37.407Z Has data issue: false hasContentIssue false

The Magnetodynamic Model of Quasars

Published online by Cambridge University Press:  30 March 2016

L.M. Ozernoj*
Affiliation:
P.N. Lebedev Physical Institute, Academy of Sciences of the U.S.S.R., Moscow

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although the energy problem is one of the main difficulties of the cosmological interpretation of quasar red-shifts, there is no need to go beyond conventional physical laws in seeking an explanation. Various proposals have been made which differ in important details. I believe a suitable basis for a theory of quasars to be a supermassive plasma configuration, the matter of which is in mostly regular motion in a magnetic field. Such a magnetodynamic configuration I shall call a ‘magnetoid’. On this model a quasar is a galaxy with a dense non-stellar nucleus, the magnetoid, which gives rise to the characteristic non-thermal luminosity. The mass of the quasar is determined by its stars while the parameters of the magnetoid depend on the stage of evolution or conditions of formation in a similar way to those of radiogalaxies or active nuclei of galaxies.

Type
Joint Discussions
Copyright
Copyright © Reidel 1968

References

1. Fowler, W.A. (1964) Rev. mod. Phys., 36, 545; (1966) Astrophys. J., 144, 180.CrossRefGoogle Scholar
2. Ginzburg, V.L., Ozernoj, L.M. (1964) Zu. eksp. teor. Fiz., 47, 1030.Google Scholar
3. Ozernoj, L.M. (1966) Soviet Phys. Dokl., 10, 581.Google Scholar
4. Layzer, D. (1965) Astrophys. J., 141, 837.Google Scholar
5. Ozernoj, L.M. (1967) in Proc. Symp. “Variable Stars and Stellar Evolution” (Moscow 1964), Nauka Publ. House, Moscow, pp. 140155.Google Scholar
6. Ozernoj, L.M. (1967) ibid., pp. 13-39.Google Scholar
7. Ozernoj, L.M. (1966) Soviet Astr., 10, 241.Google Scholar
8. Sturrock, P. (1965) Nature, 205, 861; (1966) Nature, 211, 697.CrossRefGoogle Scholar
9. Piddington, J.H. (1966) Mon. Not. R. astr. Soc, 133, 163.Google Scholar
10. Bisnovaty-Kogan, G.S., Zel’dovic, Ja.B., Novikov, I.D. (1967) Astr. Zu., 44, 525.Google Scholar
11. Gudzenko, L.I., Ozernoj, L.M., Čertoprud, V.E. (1967) Nature, 215, 605.Google Scholar
12. Ozernoj, L.M., Čertoprud, V.E. (1967) Astr. Zu., 44, 537.Google Scholar
13. Ozernoj, L.M., Čertoprud, V.E. (1966) Soviet Astr., 10, 15.Google Scholar
14. Smith, H.J. (1965) in Quasi-Stellar Sources and Gravitational Collapse, Ed. by Robinson, I. et al., Univ. of Chicago Press, Chicago, p. 221.Google Scholar
15. Ginzburg, V.L., Ozernoj, L.M. (1967) inProc. of 3rd Texas Symp. on Relativistic Astrophysics, New York (in press).Google Scholar
16. Šklovskij, I.S. (1965) Soviet Astr., 9, 683.Google Scholar
17. Kinman, T.D., Lamia, E., Wirtanen, C A. (1966) Astrophys. J., 146,964.Google Scholar
18. Ozernoj, L.M. Astr. Zu. (in press).Google Scholar
19. Ambarcumjan, V.A. (1958) in La Structure et L’Evolution de L’Univers (Proc. ofWth Solvay Conference), Ed. by Stoops, R., Brussels, p. 241.Google Scholar
20. Ozernoj, L.M., Sazonov, V.N. (1968) Nature (in press); Astr. Zu. (in press).Google Scholar
21. Ozernoj, L.M., Černin, A.D. (1967) Astr. Zu., 44, 1131; Zu. eksp. teor. Fiz. (Pisa) (in press); Astr. Zu. 45, (in press).Google Scholar