No CrossRef data available.
Published online by Cambridge University Press: 14 August 2015
The exploration of our Solar System is rapidly growing in importance as a scientific discipline. During the last decades, great progress has been achieved as the result of space missions to planets and small bodies and improved remote-sensing methods, as well as due to refined techniques of laboratory measurements and a rapid progress in theoretical studies, involving the development of various astrophysical and geophysical evolutionary models, based in particular on the approach of comparative planetology. In the crossroads of astronomy and geophysics, recent years have seen a growing understanding of the importance of impact phenomena throughout the history of the Solar System and, therefore, the necessity to get more insight into the problem of interactions of planets and small bodies. This importance is clearly manifested by the observed cratering records of planetary surfaces and such dramatic events as the explosions of the comet P/Shoemaker-Levy 9 fragments in Jupiter’s atmosphere in 1994, that of the Tunguska object over Siberia in 1908, and the Chicxulub event dating back to the end of the Cretaceous.