No CrossRef data available.
Published online by Cambridge University Press: 30 March 2016
Diffuse background radiation has been detected over 16 decades of frequency - from a few MHz up to ~3 × 1016 MHz (100 MeV) - and there are upper limits over an even wider range. Generally an important contribution comes from the galactic disc, but in some wavebands it has proved possible to isolate a truly cosmic isotropic component originating beyond our own Galaxy. A simple Olbers-type argument shows that the bulk of any extragalactic radiation field originates at cosmological distances. This is true whether the radiation is emitted by discrete sources, or comes from extragalactic (or pregalactic) space. Thus studies of the isotropie background radiation, or even upper limits to its intensity, yield data that are vital for cosmology, as well as telling us something about the properties of diffuse intergalactic matter, and about intrinsically faint extragalactic objects which cannot be observed individually.
In this talk I shall not attempt a systematic review of this extensive subject, but will merely discuss a few recent developments. I shall give special attention to the microwave and X-ray regions of the spectrum, as these are the two bands in which the cosmic background is so strong that it swamps the emission from the Galaxy.