Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-12T09:28:46.306Z Has data issue: false hasContentIssue false

Cloud Collapse and Fragmentation

Published online by Cambridge University Press:  14 August 2015

A. P. Boss*
Affiliation:
DTM, Carnegie Institution of Washington, 5241 Broad Branch Road, N. W. Washington, D.C. 20015, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Interstellar clouds are thought to undergo a rapid phase of collapse in the process of contracting to form stars. Break-up during this collapse phase is termed fragmentation. Computer codes capable of calculating the hydrodynamics of cloud collapse in three spatial dimensions have been used to study the fragmentation process. Fragmentation into binary or multiple protostellar systems is the preferred outcome of collapse; only very slowly rotating, high thermal energy clouds, or clouds starting from power-law initial density profiles, avoid fragmentation and form single stars.

Type
Joint Discussions
Copyright
Copyright © Kluwer 1989

References

Bodenheimer, P. 1978, Ap. J., 224, 488.Google Scholar
Bodenheimer, P., and Boss, A. P. 1981, M.N.R.A.S., 197, 477.Google Scholar
Bodenheimer, P., Tohline, J. E., and Black, D. C. 1980, Ap. J., 242, 209.Google Scholar
Boss, A. P. 1980, Ap. J., 237, 866.Google Scholar
Boss, A. P. 1981a, Ap. J., 246, 866.Google Scholar
Boss, A. P. 1981b, Ap. J., 250, 636.Google Scholar
Boss, A. P. 1985, Icarus, 61, 3.Google Scholar
Boss, A. P. 1986, Ap. J. Suppl, 62, 519.Google Scholar
Boss, A. P. 1987, Ap. J., 319, 149.CrossRefGoogle Scholar
Boss, A. P. 1988a, Ap. J., 331, 370.Google Scholar
Boss, A. P.1988b, Comments Ap., 12, 169.Google Scholar
Boss, A. P., and Bodenheimer, P. 1979, Ap. J., 234, 289.Google Scholar
Gingold, R. A., and Mongahan, J. J. 1981, M.N.R.A.S., 197, 461.Google Scholar
Gingold, R. A., and Mongahan, J. J. 1982, M.N.R.A.S., 199, 115.CrossRefGoogle Scholar
Gingold, R. A., 1983, M.N.R.A.S., 204, 715.Google Scholar
Hayashi, C., Narita, S., and Miyama, S. M. 1982, Prog. Theor. Phys., 68, 1949.Google Scholar
Larson, R. B. 1972, M.N.R.A.S., 156, 437.Google Scholar
Larson, R. B. 1978, M.N.R.A.S., 184, 69.Google Scholar
Miyama, S. M., Hayashi, C., and Narita, S. 1984, Ap. J., 279, 621.Google Scholar
Monaghan, J. J., and Lattanzio, J. C. 1985, Astr. Ap., 149, 135.Google Scholar
Monaghan, J. J., and Lattanzio, J. C. 1986, Astr. Ap., 158, 207.Google Scholar
Narita, S., and Nakazawa, K. 1977, Progr. Theor. Phys., 59, 1018.Google Scholar
Różyczka, M., Tscharnuter, W. M., and Yorke, H. W. 1980, Astron. Ap., 81, 347.Google Scholar
Tohline, J. E. 1980, Ap. J., 235, 866.Google Scholar
Tscharnuter, W. M. 1987, in Physical Processes in Comets, Stars, and Active Galaxies, eds. Meyer-Hofmeister, E., Thomas, H. C., and Hillebrandt, W. (Berlin: Springer-Verlag), p. 96.Google Scholar
Wood, D. 1982, M.N.R.A.S., 199, 331.Google Scholar