No CrossRef data available.
Article contents
n-T-COTORSION-FREE MODULES
Part of:
Homological algebra
Abelian categories
Homological methods
Representation theory of rings and algebras
Published online by Cambridge University Press: 25 March 2019
Abstract
In order to better unify the tilting theory and the Auslander–Reiten theory, Xi introduced a general transpose called the relative transpose. Originating from this, we introduce and study the cotranspose of modules with respect to a left A-module T called n-T-cotorsion-free modules. Also, we give many properties and characteristics of n-T-cotorsion-free modules under the help of semi-Wakamatsu-tilting modules AT.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 2019
References
Assem, I., Simson, D. and Skowronski, A., Elements of the representation theory of associative algebra, London Mathematical Society Student Texts, vol. 65 (Cambridge University Press, 2006).CrossRefGoogle Scholar
Auslander, M. and Bridger, M., Stable module theory, Mem. Amer. Math. Soc. (1969), 94.Google Scholar
Auslander, M. and Reiten, I., Applications of contravariantly finite subcategories, Adv. Math. 85 (1990), 111–152.Google Scholar
Auslander, M. and Smalø, S., Preprojective modules over Artin algebras, J. Algebra 66 (1980), 61–122.CrossRefGoogle Scholar
Geng, Y., A generalization of the Auslander transpose and the generalized Gorenstein dimension, Czechoslovak Math. J. 63(1) (2013), 143–156.CrossRefGoogle Scholar
Huang, Z., On a generalization of Auslander-Bridge transpose, Comm. Algbera 27 (1999), 5791–5812.Google Scholar
Tang, X. and Huang, Z., Homological aspects of the dual Auslander transpose, Forum Math. 27(6) (2015), 3717–3743.10.1515/forum-2013-0196CrossRefGoogle Scholar
Tong, W. T., An introduction to homological algebra (Higher Education Press, Beijing 1998).Google Scholar
Wakamatsu, T., On modules with trivial self-extensions, J. Algebra 114 (1988), 106–114.CrossRefGoogle Scholar