Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T12:35:33.772Z Has data issue: false hasContentIssue false

A re-evaluation of the blueschist facies

Published online by Cambridge University Press:  01 May 2009

R. M. Wood
Affiliation:
Department of Mineralogy and Petrology, Downing Place, Cambridge

Summary

The blueschist facies metamorphism has always been one of the most difficult to quantify. This is for two important reasons. Firstly, the temperatures and pressures of the facies tend to be inaccessible to experimental analogues of the blueschist indicator minerals: aragonite, glaucophane, jadeite and lawsonite. Secondly, the conditions of blueschist metamorphism are not typical of the earth's crust. For a rock to be metamorphosed under lower temperatures at a given pressure than those of normal geothermal gradients (considered here as negative deviation metamorphism) requires ‘rapid’ downwarping and reuplifting. The movement during metamorphism, combined with hydration rather than dehydration (a feature of this environment) fails to preserve a single metamorphic culmination and hence the mineralogy and textures of blueschist assemblages may fail to match the conventional phase equilibrium metamorphic model. Thus the simple phase equilibrium interpretative basis of metamorphic petrology is recognized as only a special case of a more general theory of metamorphic chemical/mineral interaction.

Type
Articles
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrell, S. O., Bown, M. G. & McKie, D. 1965. Deerite, howieite and zussmanite, three new minerals from the Franciscan of the Laytonville District, Mendocino County, California (abs.). Am. Miner. 50, 278.Google Scholar
Bailey, E. H., Blake, M. C. Jnr. & Jones, D. L. 1970. On land Mesozoic oceanic crust in California Coast Ranges. Prof. Pap. U.S. geol. Surv. 700-C, 7081.Google Scholar
Black, P. M. 1974. Oxygen isotope study of rocks from the Ouégoa District of New Caledonia. Contr. Miner. Petrol. 47, 197206.CrossRefGoogle Scholar
Boettcher, A. L. & Wyllie, P. J. 1968. Jadeite stability measured in the presence of silicate liquids in the system NaAlSiO4-SiO2-H2O. Geochim. cosmochim. Acta 32, 9991012.CrossRefGoogle Scholar
Brown, E. H. 1971. Phase relations of biotite and stilpnomelane in the greenschist facies. Contr. Miner. Petrol. 31, 275–99.CrossRefGoogle Scholar
Brown, E. H. 1974. Comparison of the mineralogy and phase relations of blueschists from the North Cascades, Washington, and greenschists from Otago, New Zealand. Bull. geol. Soc. Am. 85, 333–44.2.0.CO;2>CrossRefGoogle Scholar
Brown, W. H., Fyfe, W. S. & Turner, F. J. 1962. Aragonite in Californian glaucophane schists, and the kinetics of the aragonite/calcite transformation. J. Petrology 3, 566–82.CrossRefGoogle Scholar
Brown, W. L. 1972. La symétrie et les solutions solides des clinopyroxenes. Bull. Soc. fr. Min. Crist. 95, 574–82.Google Scholar
Carman, J. H. 1974. Preliminary data on the P–T stability of synthetic glaucophane. EOS 55, 481.Google Scholar
Clark, S. P. Jnr. 1957. A note on the calcite-aragonite equilibrium. Am. Miner. 42, 564–6.Google Scholar
Coleman, R. G. 1972. The Colebrooke Schist of South-Western Oregon and its relation to the tectonic evolution of the region. Bull. geol. Surv. U.S. 133.Google Scholar
Coleman, R. G. & Lee, D. E. 1962. Metamorphic aragonite in the glaucophane schist of Cazadero, California. Am. J. Sci. 260, 77595.CrossRefGoogle Scholar
Davis, B. L. & Adams, L. H. 1965. Kinetics of the calcite = aragonite transformation. J. geophys. Res. 70, 433–41.CrossRefGoogle Scholar
De Roever, W. P. 1955. Genesis of jadeite by low-grade metamorphism. Am. J. Sci. 253, 283–98.CrossRefGoogle Scholar
De Roever, W. P. 1967. Overdruk van tektonische oorsprung of diepe metamorfose? Kon. Ned. Akad. Wet., Vers. Gew. Vergad. Afd. Nat. 76, 6974.Google Scholar
Ernst, W. G. 1963. Polymorphism in alkali amphiboles. Am. Miner. 48, 241–60.Google Scholar
Ernst, W. G. 1965. Mineral parageneses in Franciscan metamorphic rocks, Panoche Pass, California. Bull. geol. Soc. Am. 76, 879913.CrossRefGoogle Scholar
Ernst, W. G. 1971. Do mineral parageneses reflect unusually high-pressure conditions of Franciscan metamorphism? Am. J. Sci. 270, 81108.CrossRefGoogle Scholar
Essene, E. J., Fyfe, W. S. & Turner, F. J. 1965. Petrogenesis of Franciscan glaucophane schists and associated metamorphic rocks, California. Beiträge Min. Pet. Mitt. 11, 695704.Google Scholar
Gilbert, M. C. & Popp, R. K. 1963. Properties and stability of glaucophane at high pressure. EOS 54, 1223.Google Scholar
Gresens, R. L. 1969. Blueschist alteration during serpentinisation. Contr. Miner. Petrol. 24, 93113.CrossRefGoogle Scholar
Hlabse, T. & Kleppa, O. J. 1968. The thermochemistry of jadeite. Am. Miner. 53, 1282–92.Google Scholar
Korzhinskhy, D. S. 1965. The theory of systems with perfectly mobile components and processes of mineral formation. Am. J. Sci. 263, 193205.CrossRefGoogle Scholar
Liou, J. G. 1971. P–T stabilities of laumontite, wairakite, lawsonite and related minerals in the system CaAl2Si2O8-SiO2-H2O. J. Petrology 12, 379411.CrossRefGoogle Scholar
Maresch, W. V. 1973. New data on the synthesis and stability relations of glaucophane. Earth Planet. Sci. Lett. 20, 385–90.CrossRefGoogle Scholar
Miyashiro, A. 1961. Evolution of metamorphic belts. J. Petrology 2, 277311.CrossRefGoogle Scholar
Newton, R. C. & Fyfe, W. S. 1976. High pressure metamorphism. In The Evolution of the Crystalline Rocks, pp. 101–86. Bailey & Macdonald, Academic Press.Google Scholar
Newton, R. C. & Kennedy, G. C. 1963. Some equilibrium reactions in the join CaAl2Si2O8-H2O. J. geophys. Res. 68, 2967–83.CrossRefGoogle Scholar
Newton, R. C. & Smith, J. V. 1967. Investigations concerning the breakdown of albite at depth in the earth. J. Geol. 75, 268–86.CrossRefGoogle Scholar
Norris, R. J. & Henley, R. W. 1976. De-watering of a metamorphic pile. Geology 4, 333–6.Google Scholar
Plas, L. van der. 1959. Petrology of the Northern Adula region Switzerland (with particular reference to glaucophane-bearing rocks). Leidse Geol. Meded. 24, 415602.Google Scholar
Raheim, A. & Green, D. H. 1974. Experimental determination of the temperature and pressure dependence of the Fe-Mg partition coefficient for coexisting garnet and clinopyroxene. Contrib. Miner. Petrol. 48, 179203.CrossRefGoogle Scholar
Sass, J. H. 1971. The earth's heat and internal temperatures. In Understanding the Earth (ed. Gass, , Smith, and Wilson, ), pp. 81–8. Open Univerity Press.Google Scholar
Seki, Y. 1961. Pumpellyite in low grade metamorphism. J. Petrology 2, 407–23.CrossRefGoogle Scholar
Sobolev, V. S. (ed.) 1975. Metamorphism at High Pressures. Canberra: A.N.U.Google Scholar
Spry, A. 1969. Metamorphic Textures. New York: Pergamon Press.Google Scholar
Taliaferro, N. L. 1943. The Franciscan Knoxville problem. Bull. Am. Ass. Petrol. Geol. 27. 109219.Google Scholar
Taylor, H. P. & Coleman, R. G. 1968. O18/O16 ratios of coexisting minerals in glaucophane bearing metamorphic rocks. Bull. geol. Soc. Am. 79, 1727–55.CrossRefGoogle Scholar
Thompson, J. B. 1959. Local equilibrium in metasomatic processes. In Researches in Geochemistry (ed. Abelson, ), pp. 427–57. New York: John Wiley.Google Scholar
Turner, F. J. 1948. Mineralogical and structural evolution of the metamorphic rocks. Mem. geol. Soc. Am. 30.Google Scholar
Zen, E-an. 1963. Components, phases and criteria of chemical equilibrium in rocks. Am. J. Sci. 261, 929–42.CrossRefGoogle Scholar