Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T03:49:14.008Z Has data issue: false hasContentIssue false

Magmatic activity at the Silurian/Devonian boundary in the Brunovistulia and Małopolska Terranes (S Poland): possible link with the Rheic Ocean closure and the onset of the Rheno-Hercynian Basin

Published online by Cambridge University Press:  17 May 2019

Jerzy Nawrocki*
Affiliation:
Faculty of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, Al. Kraśnicka 2cd, 20-718Lublin, Poland
Magdalena Pańczyk
Affiliation:
Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975Warsaw, Poland
Piotr Szrek
Affiliation:
Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975Warsaw, Poland
*
Author for correspondence: Jerzy Nawrocki, Email: [email protected]

Abstract

The age of granophyric diorite from the Sosnowiec IG-1 borehole (Brunovistulia Terrane) was studied by means of U–Pb single-grain zircon analysis performed on a SHRIMP (sensitive high-resolution ion microprobe) IIe device. The isotope ages and provenance of zircons from the Emsian tuffs cropping out in the southern part of the Holy Cross Mountains (Małopolska Terrane) were also investigated using the same method. The age of the diorite intrusion (420 ± 2 Ma) is comparable with the combined Ar–Ar/magnetostratigraphic age of the Bardo diabase intrusion from the northern part of the Małopolska Terrane. These intrusions were emplaced during the same event of regional tectonic extension associated with the Rheic Ocean closure and the onset of processes creating the Rheno-Hecynian Basin near the Silurian/Devonian boundary. A negative Nb anomaly characteristic of both intrusions could be linked with the subduction of the Rheic oceanic crust under the SE margin of the Old Red Continent. Emsian magmatic activity in the distant Rheno-Hercynian Zone provided several tuff layers in the northern part of the Małopolska Terrane. As can be inferred from zircon ages, these tuffs were derived from mafic eruptions that cut sedimentary rocks containing detrital zircons transported from Baltica. This interpretation fits the existing models of development of the Rheno-Hercynian Basin in the Emsian.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belka, Z, Valverde-Vaquero, P, Dörr, W, Ahrendt, H, Wemmer, K, Franke, W and Schäfer, J (2002) Accretion of first Gondwana-derived terranes at the margin of Baltica. In Paleozoic Amalgamation of Central Europe (eds Winchester, JA, Pharaoh, TC and Verniers, J), pp. 1936. Geological Society of London, Special Publication no. 201.Google Scholar
Bogacz, W and Krokowski, J (1981) Rotation of the basement of the Upper Silesian Coal Basin. Annales Societatis Geologorum Poloniae 51, 361–81.Google Scholar
Buła, Z (2000) Lower Palaeozoic of Upper Silesia and West Małopolska. Prace Państwowego Instytutu Geologicznego 171, 189 (in Polish with English summary).Google Scholar
Czarnocki, J (1938) Ogólna mapa geologiczna Polski w skali 1:100 000. Arkusz Kielce. Warszawa: Państwowy Instytut Geologiczny.Google Scholar
Dadlez, R (1995) Debates about pre-Variscan tectonics of Poland. Studia Geophysica et Geodætica 39, 227–34.CrossRefGoogle Scholar
Dudek, A (1980) The crystalline basement block of the outer Carpathians in Moravia: Bruno-Vistulicum. Rozprawy Československe Akademie Ved 90, 81–5.Google Scholar
Fatka, O and Vavrdova, M (1998) Early Cambrian Acritarcha from sediments underlaying the Devonian in Moravia (Menin-1 borehole, southern Moravia). Bulletin of Czech Geological Survey 73, 5560.Google Scholar
Fijałkowska-Mader, A and Malec, J (2011) Biostratigraphy of the Emsian to Eifelian in the Holy Cross Mountains (Poland). Geological Quarterly 55, 109–38.Google Scholar
Franke, W, Cocks, LRM and Torsvik, TH (2017) The Palaeozoic Variscan oceans revisited. Gondwana Research 48, 257–84.CrossRefGoogle Scholar
Friedl, G, Fritz, A, Von Quadt, A, McNaughton, NJ and Fletcher, IR (2001) Results of conventional and SHRIMP U-Pb zircon dating in the south-eastern Bohemian Massif (Austria, Czech Republic): implications for a delineation of different Peri-Gondwana terranes in Variscan Central Europe. ESF EUROPROBE Meeting ‘Neoproterozoic–Early Palaeozoic Time-Slice Symposium: Orogeny and Cratonic Response on the Margins of Baltica’, Ankara, Abstracts, pp. 1618.Google Scholar
Gradstein, FM, Ogg, JG, Schmitz, MD and Ogg, GM (2012) The Geologic Time Scale 2012. Elsevier.Google Scholar
Hegner, E and Kröner, A (2000) Review of Nd isotopic data and xenocrystic and detrital zircon ages from the pre-Variscan basement in the eastern Bohemian Massif: speculations on palinspastic reconstructions. In Orogenic Processes, Quantification and Modelling in the Variscan Belt (eds Franke, W, Haak, V, Oncken, O and Tanner, D), pp. 113–30. Geological Society of London, Special Publication no. 179.Google Scholar
Kalvoda, J, Babek, O, Fatka, O, Leichmann, J, Melichar, R, Nehyba, S and Spacek, P (2008) Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. International Journal of Earth Sciences 97, 497518.CrossRefGoogle Scholar
Kowalczewski, Z and Lisik, R (1974) Nowe dane o diabazach i budowie geologicznej Prągowca w Górach Świętokrzyskich. Biuletyn Instytutu Geologicznego 275, 113–52.Google Scholar
Kowalski, WR (1983) Stratigraphy of the Upper Precambrian and lowest Cambrian strata in southern Poland. Acta Geologica Polonica 33, 183218.Google Scholar
Kozłowski, W, Domańska-Siuda, J and Nawrocki, J (2014) Geochemistry and petrology of the Upper Silurian greywackes from the Holy Cross Mountains (central Poland): implications for the Caledonian history of the southern part of the Trans-European Suture Zone (TESZ). Geological Quarterly 58, 311–36.CrossRefGoogle Scholar
Kroner, U, Hahn, T, Romer, RL and Linnemann, U (2007) The Variscan orogeny in the Saxo-Thuringian zone – heterogeneous overprint of Cadomian/Paleozoic Peri-Gondwana crust. In The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision (eds Linnemann, U, Nance, RD, Kraft, P and Zulauf, G), pp. 153–72. Geological Society of America, Special Paper no. 423.Google Scholar
Krzemiński, L (2004) Geochemical constraints on the origin of the mid-Paleozoic diabases from the Holy Cross Mts. and Upper Silesia, southeastern Poland. Geological Quarterly 48, 147–58.Google Scholar
Kusiak, M, Kędzior, A, Paszkowski, M, Suzuki, K, Gonzalez-Alvarez, I, Wajsprych, B and Doktor, M (2006) Provenance implications of Th-U-Pb electron microprobe ages from detrital monazite in the Carboniferous Upper Silesia Coal Basin, Poland. Lithos 88, 5671.CrossRefGoogle Scholar
Leichman, J and Höck, V (2001) The Brunovistulicum: a Gondwana derived terrain accreted to Baltica. ESF EUROPROBE Meeting, ‘Neoproterozoic–Early Palaeozoic Time-Slice Symposium: Orogeny and Cratonic Response on the Margins of Baltica’, Ankara, Abstracts, pp. 37–8.Google Scholar
Linnemann, U, Herbosch, A, Liégeois, JP, Pin, CH, Gärtner, A and Hofmann, M (2012) The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: a review with new zircon ages, geochemistry, Sm-Nd isotopes, stratigraphy and palaeogeography. Earth-Science Reviews 112, 126–54.CrossRefGoogle Scholar
Ludwig, KR (2000) SQUID 1.00, A User’s Manual. Berkeley, California: Berkeley Geochronology Center, Special Publication no. 2.Google Scholar
Ludwig, KR (2003) Isoplot/Ex version 3.0. A Geochronological Toolkit for Microsoft Excel. Berkeley, California: Berkeley Geochronology Center, Special Publication no. 1a.Google Scholar
Malec, J (2001) Sedimentology of deposits from around the Caledonian unconformity in the western Holy Cross Mts. Geological Quarterly 45, 397415.Google Scholar
Malinowski, M, Żelaźniewicz, A, Grad, M, Guterch, A and Janik, T (2005) Seismic and geological structure of the crust in the transition from Baltica to Palaeozoic Europe in SE Poland – CELEBRATION 2000 experiment, profile CEL02. Tectonophysics 401, 5577.CrossRefGoogle Scholar
Mazur, S, Kröner, A and Szczepański, J (2010) Single zircon U-Pb ages and geochemistry of granitoid gneisses from SW Poland: evidence for an Avalonian affinity of the Brunian microcontinent. Geological Magazine 147, 508–26.CrossRefGoogle Scholar
Moczydłowska, M (1997) Proterozoic and Cambrian successions in Upper Silesia: an Avalonian terrane in Southern Poland. Geological Magazine 134, 679–89.CrossRefGoogle Scholar
Nawrocki, J (2000) Late Silurian paleomagnetic pole from the Holy Cross Mountains: constraints for the post-Caledonian tectonic activity of the Trans-European Suture Zone. Earth and Planetary Science Letters 179, 325–34.CrossRefGoogle Scholar
Nawrocki, J (2015) Once again about terranes in Poland and their wandering. Przegląd Geologiczny 63, 1272–83 (in Polish with English summary).Google Scholar
Nawrocki, J, Krzemiński, L and Pańczyk, M (2010) 40Ar-39Ar ages of selected rocks and minerals from the Kraków–Lubliniec Fault Zone, and their relation to the Paleozoic structural evolution of the Małopolska and Brunovistulian terranes (S Poland). Geological Quarterly 54, 289300.Google Scholar
Nawrocki, J and Poprawa, P (2006) Development of Trans-European Suture Zone in Poland: from Ediacaran rifting to Early Palaeozoic accretion. Geological Quarterly 50, 5976.Google Scholar
Nawrocki, J, Salwa, S and Pańczyk, M (2013) New 40Ar-39Ar age constraints for magmatic and hydrothermal activity in the Holy Cross Mts. (southern Poland). Geological Quarterly, 57, 551–60.CrossRefGoogle Scholar
Nawrocki, J, Żylińska, A, Buła, Z, Grabowski, J, Krzywiec, P and Poprawa, P (2004) Early Cambrian location and affinities of the Brunovistulian terrane (Central Europe) in the light of palaeomagnetic data. Journal of the Geological Society of London 161, 513–22.CrossRefGoogle Scholar
Oncken, O, von Winterfeld, C and Dittmar, U (1999) Accretion and inversion of rifted passive margin – the Late Palaeozoic Rhenohercynian fold and thrust belt. Tectonics 18, 75–91.CrossRefGoogle Scholar
Pajchlowa, M and Miłaczewski, L (1974) Dewon dolny. In: Atlas litologiczno-paleogeograficzny obszarów platformowych Polski. Cz. I – Proterozoik i paleozoik (eds Czermiński, J and Pajchlowa, M). Warszawa: Wydawnictwa Geologiczne.Google Scholar
Penfound-Marks, LRG and Shail, RK (2015) Early Devonian rift-related felsic igneous rocks in the western Looe Basin, South-West England. Geoscience in South-West England 13, 471–82.Google Scholar
Pin, C and Marini, F (1993) Early Ordovician continental break-up in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodal igneous associations of the southern Massif Central, France. Lithos 29, 177–96.CrossRefGoogle Scholar
Přichystal, A (1999) K-Ar age determination of basaltic dyke from Zelesice (Brno massif). Geologické výzkumy na Moravă ve Slezsku 6, 120–1.Google Scholar
Shatz, M, Zwing, A, Tait, J, Belka, Z, Soffel, HC and Bachtadse, V (2006) Paleomagnetism of Ordovician carbonate rocks from Małopolska Massif, Holy Cross Mountains, SE Poland – magnetostratigraphic and geotectonic implications. Earth Planetary and Science Letters 244, 349–60.CrossRefGoogle Scholar
Słaby, E, Breitkreuz, C, Żaba, J, Domańska-Siuda, J, Gaidzik, K, Falenty, K and Falenty, A (2010) Magma generation in an alternating transpressional-transtensional regime, the Kraków-Lubliniec Fault Zone, Poland. Lithos 119, 251–68.CrossRefGoogle Scholar
Steiger, RH and Jäger, E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Stevenson, JA, Millington, SC, Beckett, FM, Swindles, GT and Thordarson, T (2015) Big grains go far: understanding the discrepancy between tephrochronology and satellite infrared measurements of volcanic ash. Atmospheric Measurement Techniques 8, 2069–91.CrossRefGoogle Scholar
Szulczewski, M and Porębski, S (2008) Stop 1 – Bukowa Góra, Lower Devonian. In Ichnological Sites of Poland. The Holy Cross Mountains and the Carpathian Flysch. The Second International Congress on Ichnology. Cracow, Poland, August 2 – September 8, 2008. The Pre-Congress and Post-Congress Field Trip Guidebook (eds Pieńkowski, G and Uchman, A), pp. 1837. Warsaw: Polish Geological Institute.Google Scholar
Szrek, P and Dupret, V (2017) Placoderms in the Lower Devonian ‘placoderm sandstone’ of the Holy Cross Mountains, Poland with biostratigraphical and palaeogeographical implications. Acta Palaeontologica Polonica 62, 789800.CrossRefGoogle Scholar
Tarnowska, M (1976) Lithological correlation of Lower Devonian in the eastern part of the Holy Cross Mountains. Biuletyn Instytutu Geologicznego 296, 75115 (in Polish with English summary).Google Scholar
Tera, F and Wasserburg, GJ (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth and Planetary Science Letters 14, 281304.CrossRefGoogle Scholar
Unrug, R, Harańczyk, C and Chocyk-Jamińska, M (1999) Easternmost Avalonian and Armorican-Cadomian terranes of central Europe and Caledonian-Variscan evolution of the polydeformed Kraków mobile belt: geological constraints. Tectonophysics 302, 133–57.CrossRefGoogle Scholar
Walczak, A and Bełka, Z (2017) Fingerprinting Gondwana versus Baltica provenance: Na and Sr isotopes in Lower Paleozoic clastic rocks of the Małopolska and Łysogóry terranes, southern Poland. Gondwana Research 45, 138–51.CrossRefGoogle Scholar
Williams, IS (1998) U-Th-Pb geochronology by ion microprobe. In Applications of Microanalytical Techniques to Understanding Mineralizing Processes (eds McKibben, MA, Shanks III, WC and Ridley, WI), pp. 135. Reviews in Economic Geology, vol. 7.Google Scholar
Williams, IS and Claesson, S (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides: II Ion microprobe zircon U-Th-Pb. Contributions to Mineralogy and Petrology 97, 205–17.CrossRefGoogle Scholar
Willner, AP, Barr, S, Gerdes, A, Massonne, HJ and White, C (2013) Origin and evolution of Avalonia: evidence from U-Pb and Lu-Hf isotopes in zircon from the Mira terrane, Canada, and the Stavelot Massif, Belgium. Journal of the Geological Society of London 170, 769–84.CrossRefGoogle Scholar
Winchester, JA and The Pace TMR Networkteam (2002) Paleozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360, 521.CrossRefGoogle Scholar
Wójcik, K (2015) The uppermost Emsian and lower Eifelian in the Kielce Region of the Holy Cross Mts. Part I: Lithostratigraphy. Acta Geologica Polonica 65, 141–79.CrossRefGoogle Scholar
Żaba, J (1999) The structural evolution of Lower Palaeozoic succession in the Upper Silesia Block and Małopolska Block border zone (Southern Poland). Prace Państwowego Instytutu Geologicznego 166, 1162 (in Polish with English summary).Google Scholar
Zeh, A and Gerdes, A (2010) Baltica- and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): implications for the closure of the Rheic ocean. Gondwana Research 17, 254–63.CrossRefGoogle Scholar
Żelaźniewicz, A, Buła, Z, Fanning, M, Seghedi, A and Żaba, J (2009) More evidence on Neoproterozoic terranes in Southern Poland and southeastern Romania. Geological Quarterly 53, 93124.Google Scholar
Żelaźniewicz, A, Pańczyk, M, Nawrocki, J and Fanning, M (2008) A Carboniferous/Permian, calc-alkaline, I-type granodiorite from the Małopolska Block, Southern Poland: implications from geochemical and U-Pb zircon age data. Geological Quarterly 52, 301–8.Google Scholar
Żylińska, A (2002) Stratigraphic and biogeographic significance of Late Cambrian trilobites from Lysogóry (Holy Cross Mountains, central Poland). Acta Geologica Polonica 52, 217–38.Google Scholar