Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T01:38:53.848Z Has data issue: false hasContentIssue false

Detrital zircon U–Pb ages of the Palaeozoic Natal Group and Msikaba Formation, Kwazulu-Natal, South Africa: provenance areas in context of Gondwana

Published online by Cambridge University Press:  07 August 2015

CLARISA VORSTER*
Affiliation:
Department of Geology, University of Johannesburg, South Africa
JAN KRAMERS
Affiliation:
Department of Geology, University of Johannesburg, South Africa
NIC BEUKES
Affiliation:
Department of Geology, University of Johannesburg, South Africa
HERMAN VAN NIEKERK
Affiliation:
Department of Geology, University of Johannesburg, South Africa
*
*Author for correspondence: [email protected]

Abstract

The Natal Group and Msikaba Formation remain relatively poorly understood with regards to their provenance and relative age of deposition; a much-needed geochronological study of the detrital zircons from these two units was therefore undertaken. Five samples of the Durban and Mariannhill Formations (Natal Group) and the Msikaba Formation (Cape Supergroup) were obtained. A total of 882 concordant U–Pb ages of detrital zircon populations from these units were determined by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Major Neoproterozoic and secondary Mesoproterozoic detrital zircon age populations are present in the detrital zircon content of all the samples. Smaller contributions from Archean-, Palaeoproterozoic-, Cambrian- and Ordovician-aged grains are also present. Due to the presence of a prominent major population of 800–1000 Ma zircons in all the samples, late Stenian – Tonian ancient volcanic arc complexes overprinted by Pan-African metamorphism of Mozambique, Malawi and Zambia, along with areas of similar age within Antarctica, India and Sri Lanka, are suggested as major sources of detritus. The Namaqua–Natal Metamorphic Complex is suggested as a possible source of minor late Mesoproterozoic-aged detritus. Minor populations of Archean and Palaeoproterozoic zircons were likely sourced from the Kaapvaal and Grunehogna Cratons. Post-orogenic Cambrian – Lower Ordovician granitoids of the Mozambique Belt (Mozambique) and the Maud Belt (Antarctica) made lesser contributions. In view of the apparent broad similarity of source areas for the Natal Group and Msikaba Formation, their sedimentation occurred in parts of the same large and evolving basin rather than localized in small continental basins, and the current exposures merely represent small erosional relicts.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allibone, A. & Wysoczanski, R. 2002. Initiation of magmatism during the Cambrian-Ordovician Ross orogeny in southern Victoria Land, Antarctica. Geological Society of America Bulletin 114, 1007–18.2.0.CO;2>CrossRefGoogle Scholar
Anderson, J. M. & Anderson, H. M. 1985. Palaeoflora of Southern Africa. Prodromus of South African Megafloras: Devonian to Lower Cretaceous. Rotterdam, the Netherlands: A.A. Balkema, 253 pp.Google Scholar
Arndt, N. T., Todt, W., Chauvel, C., Tapfer, M. & Weber, K. 1991. U–Pb zircon age and Nd isotopic composition of granitoids, charnockites and supracrustal rocks from Heimefrontfjella, Antarctica. Geologische Rundschau 80, 759–77.CrossRefGoogle Scholar
Bauer, W., Jacobs, J., Fanning, C. M. & Schmidt, R. 2003. Late Mesoproterozoic arc and back-arc volcanism in the Heimefrontfjella (East Antarctica) and implications for the palaeogeography at the southeastern margin of the Kaapvaal-Grunehogna Craton. Gondwana Research 6, 449–65.CrossRefGoogle Scholar
Baur, N., Kröner, A., Liew, T. C., Todt, W., Williams, I. S. & Hofmann, A. W. 1991. U–Pb isotopic systematic of zircons from prograde and retrograde transition zones in high-grade orthogneisses, Sri Lanka. The Journal of Geology 99, 527–45.CrossRefGoogle Scholar
Belyanin, G. A., Kramers, J. D., Vorster, C. & Knoper, M. W. 2014. The timing of successive fluid events in the Southern Marginal Zone of the Limpopo Complex, South Africa: Constraints from 40Ar–39Ar geochronology. Precambrian Research 254, 169–93.CrossRefGoogle Scholar
Bingen, B., Jacobs, J., Viola, G., Henderson, I. H. C., Skår, Ø., Boyd, R., Thomas, R. J., Solli, A., Key, R. M. & Daudi, E. X. F. 2009. Geochronology of the Precambrian crust in the Mozambique belt in NE Mozambique, and implications for Gondwana assembly. Precambrian Research 170, 231–55.CrossRefGoogle Scholar
Bisnath, A., Frimmel, H. E., Armstrong, R. A. & Board, W. S. 2006. Tectono-thermal evolution of the Maud Belt: New SHRIMP U–Pb zircon data for Gjelsvikfjella, Dronning Maud Land, East Antarctica. Precambrian Research 150, 95121.CrossRefGoogle Scholar
Bloomfield, K., Deans, T. & Wells, M. K. 1981. The Ilomba alkaline complex, northern Malawi and associated uranium-niobium mineralization. Overseas Geology and Mineral Resources 57, 121.Google Scholar
Board, W. S., Frimmel, H. E. & Armstrong, R. A. 2005. Pan-African Tectonims in the Western Maud Belt: P-T-t path for High-Grade gneisses in the H.U. Sverdrupfjella, East Antarctica. Journal of Petrology 46, 671–99.CrossRefGoogle Scholar
Boger, S. D., Carson, C. J., Wilson, C. J. L. & Fanning, C. M. 2000. Neoproterozoic deformation in the Radok Lake region of the northern Prince Charles Mountains, east Antarctica; evidence for a single protracted orogenic event. Precambrian Research 104, 124.CrossRefGoogle Scholar
Bomparola, R. M., Ghezzo, C., Belousowa, E., Griffen, W. L. & O’reilly, S. Y. 2007. Resetting of the U–Pb Zircon System in Cambro-Ordovician Intrusives of the Deep Freeze Range, Northern Victoria Land, Antarctica. Journal of Petrology 48, 327–64.CrossRefGoogle Scholar
Burke, K., Ashwal, L. D. & Webb, S. J. 2003. New way to map old sutures using deformed ARCs. Geology 31, 391–4.2.0.CO;2>CrossRefGoogle Scholar
Chernicoff, C. J., Zappettini, E. O., Santos, J. O. S., Mcnaughton, N. J. & Belousova, E. 2013. Combined U–Pb SHRIMP and Hf isotope study of the Late Paleozoic Yaminu Complex, Rio Negro Province, Argentina: implications for the origin and evolution of the Patagonia composite terrane. Geoscience Frontiers 4, 3756.CrossRefGoogle Scholar
Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. 2013. The ICS International chronostratigraphic chart. Episodes 36, 199204.CrossRefGoogle Scholar
Cornell, D. H. & Thomas, R. J. 2006. Age and tectonic significance of the Banana Beach Gneiss, KwaZulu-Natal South Coast, South Africa. South African Journal of Geology 109, 335–40.CrossRefGoogle Scholar
Cornell, D. H., Thomas, R. J., Bowring, S. A., Armstrong, R. A. & Grantham, G. H. 1996. Protolith interpretation in metamorphic terranes: a back-arc environment with Besshi-type base metal potential for the Quha Formation, Natal Province, South Africa. Precambrian Research 77, 243–71.CrossRefGoogle Scholar
Cottle, J. M. & Cooper, A. F. 2006. Geology, geochemistry and geochronology of an A-type granite in the Mulock Glacier area, southern Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics 49, 191202.CrossRefGoogle Scholar
Cox, S. C., Parkinson, D. L., Allibone, A. H. & Cooper, A. F. 2000. Isotopic character of Cambro-Ordovician plutonism, southern Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics 43, 501–20.CrossRefGoogle Scholar
De Waele, B., Wingate, M. T. D., Fitzsimons, I. C. W. & Mapani, B. S. E. 2003. Untying the Kibaran knot: a reassessment of Mesoproterozoic correlations in southern Africa based on SHRIMP U–Pb data from the Irumide belt. Geology 31, 509–12.2.0.CO;2>CrossRefGoogle Scholar
Dunkley, D. J., Clarke, G. L. & White, R. W. 2002. Structural and metamorphic evolution of the mid-late Proterozoic Rayner Complex, East Antarctica. In Antarctica at the Close of a Millenium (eds Gamble, J. A., Skinner, D. N. B. & Henrys, S.). Proceedings of 8th International Symposium on Antarctic Earth Sciences, Royal Society of New Zealand Bulletin. The Royal Society of New Zealand, pp. 3142.Google Scholar
Du Toit, A. L. 1946. The geology of parts of Pondoland, East Griqualand and Natal. Explanation. Sheet 119 (Port Shepstone). Geological Survey of South Africa, 32 pp.Google Scholar
Eby, G. N., Woolley, A. R., Din, V. & Platt, G. 1998. Geochemistry and petrogenesis of nepheline syenites: Kasungu-Chipala, Ilomba, and Ulindi nepheline syenite intrusions, North Nyasa Alkaline Province, Malawi. Journal of Petrology 39, 1405–24.CrossRefGoogle Scholar
Eglington, B. M., Harmer, R. E. & Kerr, A. 1986. Petrographic, Rb–Sr isotope and geochemical characteristics of intrusive granitoids from the Port Edward–Port Shepstone area, Natal. Transactions of the Geological Society of South Africa 89, 199213.Google Scholar
Eglington, B. M., Harmer, R. E. & Kerr, A. 1989 a. Isotope and geochemical constraints on Proterozoic crustal evolution in south-eastern Africa. Precambrian Research 45, 159–74.CrossRefGoogle Scholar
Eglington, B. M., Harmer, R. E. & Kerr, A. 1989 b. Rb–Sr isotopic constraints on the ages of the Mgeni and Nqwadolo granites, valley of a thousand hills, Natal. South African Journal of Geology 92, 393–9.Google Scholar
Eglington, B. M., Thomas, R. J. & Armstrong, R. A. 2010. U–Pb SHRIMP zircon dating of Mesoproterozoic magmatic rocks from the Scottburgh area, Central Mzumbe Terrane, Kwazulu–Natal, South Africa. South African Journal of Geology 113, 229–35.CrossRefGoogle Scholar
Eglington, B. M., Thomas, R. J., Armstrong, R. A. & Walraven, F. 2003. Zircon geochronology of the Oribi Gorge Suite, KwaZulu–Natal, South Africa: constraints on the timing of trans-current shearing in the Namaqua–Natal Belt. Precambrian Research 123, 2946.CrossRefGoogle Scholar
Elliot, D. H. 2013. The geological and tectonic evolution of the Transantarctic Mountains: a review. In Antarctic Palaeoenvironments and Earth-Surface Processes (eds Hambrey, M. J., Barker, P. F., P. Barrett, J., Bowman, V., Davies, B., Smellie, J. L. & Tranter, M.), pp. 735. Geological Society of London, Special Publication no. 381, 735.Google Scholar
Encarnacion, J. & Grunow, A. 1996. Changing magmatic and tectonic styles along the paleo-Pacific margin of Gondwana and the onset of early Paleozoic magmatism in Antarctica. Tectonics 15, 1325–42.CrossRefGoogle Scholar
Federico, L., Capponi, G. & Crispini, L. 2009. The Ross Orogeny of the Transantarctic Mountains: a northern Victoria Land perspective. International Journal of Earth Science 95, 759–70.CrossRefGoogle Scholar
Giacomini, F., Tiepolo, M., Dallai, L. & Ghezzo, C. 2007. On the onset of the Ross-Orogeny magmatism in North Victoria Land – Antarctica. Chemical Geology 240, 103–28.CrossRefGoogle Scholar
Goodge, J. W., Hansen, V. L., Peacock, S. M., Smith, B. K. & Walker, W. N. 1993. Kinematic evolution of the Miller Range shear zone, central Transantarctic Mountains, Antarctica, and implications for Neoproterozoic to early Paleozoic tectonics of the East Antarctic margin of Gondwana. Tectonics 12, 1460–78.CrossRefGoogle Scholar
Grantham, G. H. & Eglington, B. M. 1992. Mineralogy, chemistry and age of granitic veins at Nicholson's Point, South coast, Natal. South African Journal of Geology 95, 8893.Google Scholar
Grantham, G. H., Manhica, A. D. S. T., Armstrong, R. A., Kruger, F. J. & Loubser, M. 2011. New SHRIMP, Rb/Sr and Sm/Nd isotope whole rock chemical data from central Mozambique and western Dronning Maud Land, Antarctica: Implications for the nature of the eastern margin of the Kalahari Craton and the amalgamation of Gondwana. Journal of African Earth Science 59, 74100.CrossRefGoogle Scholar
Grew, E. S., Manton, W. I. & James, P. R. 1988. U–Pb data on granulite facies rocks from Fold Island, Kemp Coast, East Antarctica. Precambrian Research 42, 6375.CrossRefGoogle Scholar
Harris, P. D., Moyes, A. B., Fanning, C. M. & Armstrong, R. A. 1995. Zircon ion microprobe results from the Maudheim high-grade gneiss terrane, western Dronning Maud Land, Antarctica. Extended Abstract, Centennial Geocongress (1995), Geological Society of South Africa, Rand Afrikaans University, Johannesburg, pp. 240–3.Google Scholar
Harrison, S. M. & Piercy, B. A. 1992. Basement gneisses in north-western Palmer Land: further evidence pre-Mesozoic rocks in Lesser Antarctica. In Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. & Thomson, J. W.), pp. 341–4. Cambridge: Cambridge University Press.Google Scholar
Hicks, N. 2010. Extended distribution of Natal Group within southern KwaZulu-Natal, South Africa: Implications for sediment sources and basin structure. South African Journal of Geology 113, 287306.CrossRefGoogle Scholar
Hobday, D. K., Brauteseth, S. V. & Mathew, D. 1971. The Table Mountain Series between the Mtentu river mouth and Waterfall Bluff, Pondoland. Petros 3, 5356.Google Scholar
Hobday, D. K. & Mathew, D. 1974. Depositional environment of the Cape Supergroup in the Transkei. Transactions and Proceedings of the Geological Society of South Africa 77, 223–7.Google Scholar
Hobday, D. K. & Von Brunn, V. 1979. Fluvial sedimentation and palaeogeography of an early Paleozoic failed rift, southeastern margin of Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 28, 169–84.CrossRefGoogle Scholar
Hölzl, S., Hofmann, A. W., Todt, W. & Köhler, H. 1994. U–Pb geochronology of the Sri Lankan basement. Precambrian Research 66, 123–49.CrossRefGoogle Scholar
Hoskin, P. W. O. & Schaltegger, U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. In Zircon (eds Hanchar, J. M. & Hoskin, P. W. O.), pp. 2762. Mineralogical Society of America, Reviews in Mineralogy and Geochemistry, 53.CrossRefGoogle Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.CrossRefGoogle Scholar
Jacobs, J., Bauer, W. & Fanning, C. M. 2003 a. Late Neoproterozoic/Early Palaeozoic events in central Dronning Maud Land and significance for the southern extension of the East African Orogen into East Antarctica. Precambrian Research 126, 2753.CrossRefGoogle Scholar
Jacobs, J., Bauer, W. & Fanning, C. M. 2003 b. New age constraints for Grenville-age metamorphism in western central Dronning Maud Land (East Antarctica), and implications for the palaepgeography of Kalahari in Rodinia. International Journal of Earth Science 92, 301–15.CrossRefGoogle Scholar
Jacobs, J., Bingen, B., Thomas, R. J., Bauer, W., Wingate, M. & Feitio, P. 2008. Early Palaeozoc orogenic collapse and voluminous late-tectonic magmatism in Dronning Maud Land and Mozambique: insights into the partially delaminated orogenic root of the East African-Antarctic orogen? In Geodynamic Evolution of East Antarctica: A Key to the East–West Gondwana Connection (eds Satish-Kumar, M., Motoyoshi, Y., Osanai, Y., Hiroi, Y. & Shiraishi, K.), pp. 6990. Geological Society of London, Special Publication no. 308.Google Scholar
Jacobs, J., Fanning, C. M., Henjes-Kunst, F., Olesch, M. & Paech, H-J. 1998. Continuation of the Mozambique Belt into East Antarctica: Grenville-age metamorphism and polyphase Pan-African high-grade events in central Dronning Maud Land. Journal of Geology 106, 385406.CrossRefGoogle Scholar
Jacobs, J., Hansen, B. T., Henjes-Kunst, F., Thomas, R. J., Bauer, W., Weber, K., Armstrong, R. A. & Cornell, D. H. 1999 a. New age constraints on the Proterozoic/Lower Palaeozoic evolution of Heimefrontfjella, East Antarctica, and its bearing on Rodinia/Gondwana correlations. Terra Antarctica 6, 377–89.Google Scholar
Jacobs, J. & Thomas, R. J. 1996. Pan-African rejuvenation of the c. 1.1 Ga Natal Metamorphic Province (South Africa): K–Ar muscovite and titanite fission track evidence. Journal of the Geological Society of London 153, 971–8.CrossRefGoogle Scholar
Jacobs, J., Thomas, R. J., Armstrong, R. A. & Henjes-Kunst, F. 1999 b. Age and thermal evolution of the Mesoproterozoic Cape Meredith Complex, West Falkland. Journal of the Geological Society of London 156, 917–28.CrossRefGoogle Scholar
Johnston, S. T., Armstrong, R. A., Heaman, L., Mccourt, S., Mitchell, A. A., Bisnath, A. & Arima, A. 2001. Preliminary U–Pb geochronology of the Tugela Terrane, Natal belt, eastern South Africa. Memoirs of the National Institute of Polar Research (Japan), Special Issue 55, 4058.Google Scholar
Kelly, N. M., Clarke, G. L. & Fanning, C. M. 2002. A two-stage evolution of the Neoproterozoic Rayner Structural episode: new U–Pb sensitive high resolution ion microprobe constraints from the Oygarden Group, Kemp Land, East Antarctica. Precambrian Research 116, 307–30.CrossRefGoogle Scholar
Kingsley, C. S. 1975. A new stratigraphic classification implying a lithofacies change in the Table Mountain Sandstone in southern Natal. Transactions and Proceedings of the Geological Society of South Africa 78, 4355.Google Scholar
Kingsley, C. S. & Marshall, C. G. A. 2009. Lithostratigraphy of the Msikaba Formation (Cape Supergroup). Pretoria: Council for Geoscience, SACS Lithostratigraphic Series No. 50, 7 pp.Google Scholar
Kinny, P. D., Black, L. P. & Sheraton, J. W. 1997. Zircon U–Pb ages and geochemistry of igneous and metamorphic rocks from the northern Prince Charles Mountains, Antarctica. AGSO Journal of Australian Geology and Geophysics 16, 637–54.Google Scholar
Korhonen, F. J., Clark, C., Brown, M., Bhattacharya, S. & Taylor, R. 2013. How long-lived is ultrahigh temperature (UHT) metamorphism? Constraints from zircon and monazite geochronology in the Eastern Ghats orogenic belt, India. Precambrian Research 234, 322–50.CrossRefGoogle Scholar
Košler, J. 2012. U–Pb Geochronology and Hf isotope geochemistry of detrital zircon in sedimentary systems. In Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks (ed. Sylvester, P.), pp. 185202. Mineralogical Association of Canada, Short Course Series Vol. 42.Google Scholar
Kröner, A. 2001. The Mozambique belt of East Africa and Madagascar: significance of zircon and Nd model ages for Rodinia and Gondwana Supercontinent formation and dispersal. South African Journal of Geology 104, 151–66.CrossRefGoogle Scholar
Kröner, A., Kehelpannala, K. V. W. & Hegner, E. 2003. Ca. 750–1100 Ma magmatic events and Grenville-age deformation in Sri Lanka: relevance for Rodinia supercontinent formation and dispersal, and Gondwana amalgamation. Journal of Asian Earth Sciences 22, 279300.CrossRefGoogle Scholar
Kröner, A., Rojas-Agramonte, Y., Kehelpannala, K. V. W., Zack, T., Hegner, E., Geng, H. Y., Wong, J. & Barth, M. 2013. Age, Nd-Hf isotopes, and geochemistry of the Vijayan Complex of eastern and southern Sri Lanka: A Grenville-age magmatic arc of unknown derivation. Precambrian Research 234, 288321.CrossRefGoogle Scholar
Kröner, A., Sacci, R., Jaeckel, P. & Costa, M. 1997. Kibaran magmatism and Pan-African granulite metamorphism in northern Mozambique: single zircon ages and regional implications. Journal of African Earth Sciences 25, 467–84.CrossRefGoogle Scholar
Kröner, A., Willner, A. P., Hegner, E., Jaeckel, P. & Nemchin, A. 2001. Single zircon ages, PT evolution and Nd isotopic systematic of high-grade gneisses in southern Malawi and their bearing on the evolution of the Mozambique belt in southeastern Africa. Precambrian Research 109, 257–91.CrossRefGoogle Scholar
Lock, B. E. 1973. The Cape Supergroup in Natal and northern Transkei. Geological Magazine 101, 485–6.CrossRefGoogle Scholar
Ludwig, K. R. 2003. Isoplot/Ex 3.00. A Geochronological Toolkit for Microsoft Excel. Special Publications, Vol 4. Berkeley Geochronological Centre. Berkeley, CA.Google Scholar
Lulin, J.-M., Jourde, G., Mestraud, J.-L. & Mroz, J.-P. 1985. Un nouveau gîte à Nb, Ta, (U, T.R.) en Afrique orientale: le complexe alcalin de Meponda (Réublique populaire du Mozambique). Chronique de la Recherche Minièe, 480, 3548.Google Scholar
Macey, P. H., Thomas, R. J., Grantham, G. H., Ingram, B. A., Jacobs, J., Armstrong, R. A., Roberts, M. P., Bingen, B., Hollick, L., De Kock, G. S., Viola, G., Bauer, W., Gonzales, E., Bjerkgård, T., Henderson, I. H. C., Sandstad, J. S., Cronwright, M. S., Harley, S., Solli, A., Nordgulen, Ø., Motuza, G., Daudi, E. & Manhica, V. 2010. Mesoproterozoic geology of the Nampula Block, northern Mozambique: Tracing fragments of Mesoproterozoic crust in the heart of Gondwana. Precambrain Research 182, 124–48.CrossRefGoogle Scholar
Manhica, A. S. T. D., Grantham, G. H., Armstrong, R. A., Guise, P. G. & Kruger, F. J. 2001. Polyphase deformation and metamorphism at the Kalahari Craton-Mozambique Belt boundary. In: Continental Reactivation and Reworking (eds Miller, J. A., Holdsworth, R. E., Buick, I. S. & Hand, M.), pp. 303–21. Geological Society of London, Special Publication no. 184.Google Scholar
Manttarri, I. 2008. Mesoarchean to lower Jurassic U–Pb and Sm–Nd ages from NW Mozambique. Geological Survey of Finland Special Paper 48, 81119.Google Scholar
Marshall, C. G. A. 2003 a. Lithostratigraphy of the Durban Formation (Natal Group), Including the Ulundi, Eshowe, Melmoth, Kranskloof, Situndu and Dassenhoek Members. Pretoria: Council for Geoscience, SACS Lithostratigraphic Series No. 36, 28 pp.Google Scholar
Marshall, C. G. A. 2003 b. Lithostratigraphy of the Mariannhill Formation (Natal Group), Including the Tulini, Newspaper and Westville Members. Pretoria: Council for Geoscience, SACS Lithostratigraphic Series No. 37, 17 pp.Google Scholar
Marshall, C. G. A. 2006. The Natal Group. In The Geology of South Africa (eds Johnson, M. R., Anhaeusser, C. R. & Thomas, R. J.), pp. 433–41. Johannesburg: Geological Society of South Africa, Council for Geoscience.Google Scholar
Marshall, C. G. A. & Von Brunn, V. 1999. The stratigraphy and origin of the Natal Group. South African Journal of Geology 102, 1525.Google Scholar
Mccourt, S., Armstrong, R. A., Grantham, G. H. & Thomas, R. J. 2006. Geology and evolution of the Natal belt, South Africa. Journal of African Earth Sciences 46, 7192.CrossRefGoogle Scholar
Meert, J. G. 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362, 140.CrossRefGoogle Scholar
Mendonidis, P. & Armstrong, R. A. 2009. A new U–Pb age for the Portobello Granite from the southern part of the Natal Metamorphic Belt. South African Journal of Geology 112, 197208.CrossRefGoogle Scholar
Mendonidis, P., Armstrong, R. A., Eglington, B. M., Grantham, G. H. & Thomas, R. J. 2002. Metamorphic history and U–Pb Zircon (SHRIMP) geochronology of the Glenmore Granite: Implications for the tectonic evolution of the Natal Metamorphic Province. South African Journal of Geology 105, 325–36.CrossRefGoogle Scholar
Mendonidis, P., Armstrong, R. A. & Grantham, G. H. 2009. U–Pb SHRIMP ages and tectonic setting of the Munster Suite of the Margate Terrane of the Natal Metamorphic Belt. Gondwana Research 15, 2837.CrossRefGoogle Scholar
Mikhalsky, E. V., Beliatsky, B. V., Savva, E. V., Federov, L. V. & Hahne, K. 1995. Isotopic systematics and evolution of metamorphic rocks from the northern Humboldt Mountains (the Queen Maud Land, East Antarctica). In Proceedings of the VII International Symposium on Antarctic Earth Sciences, Siena. Abstracts, p. 270.Google Scholar
Millar, I. L., Pankhurst, R. J. & Fanning, C. M. 2002. Basement chronology of the Antarctic Peninsula: recurrent magmatism and anataxis in the Paleozoic Gondwana margin. Journal of the Geological Society of London 159, 145–57.CrossRefGoogle Scholar
Milne, A. J. & Millar, I. L. 1989. The significance of mid-Palaeozoic basement in Graham Land, Antarctic Peninsula. Journal of the Geological Society of London 146, 207–10.CrossRefGoogle Scholar
Möller, A., O’brien, P. J., Kennedy, A. & Kröner, A. 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh temperature granulites of Rogaland (SW Norway) In Geochronology: Linking the Isotopic Record with Petrology and Textures (eds Vance, D., Muller, W. & Villa, I.), pp. 6581. Geological Society of London, Special Publication no. 220.Google Scholar
Muhongo, S., Kröner, A. & Nemchin, A. A. 2001. Single zircon evaporation and SHRIMP ages for Granulite Facies Rocks in the Mozambique Belt of Tanzania. Journal of Geology 109, 171–89.CrossRefGoogle Scholar
Pankhurst, R. J., Rapela, C. W., Fanning, C. M. & Márquez, M. 2006. Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews 76, 235–57.CrossRefGoogle Scholar
Pankhurst, R. J., Rapela, C. W., Loske, W. P., Márquez, M. & Fanning, C. M. 2003. Chronological study of the pre-Permian basement rocks of southern Patagonia. Journal of South America Earth Sciences 16, 2744.CrossRefGoogle Scholar
Paulsson, O. & Austrheim, H. 2003. A geochronological and geochemical study of rocks from Gjelsvikfjella, Dronning Maud Land, Antarctica – implications for Mesoproterozoic correlations and assembly of Gondwana. Precambrian Research 125, 113–38.CrossRefGoogle Scholar
Ramos, V. A. 2008. Patagonia: A paleozoic continent adrift? Journal of South American Earth Sciences 26, 235–51.CrossRefGoogle Scholar
Ray, G. E. 1974. The structural and metamorphic geology of northern Malawi. Journal of the Geological Society of London 130, 427–40.CrossRefGoogle Scholar
Rowell, A. J., Rees, M. N., Duebendorfer, E. M., Wallin, E. T., Van Schmus, W. R. & Smith, E. I. 1993. An active Neoproterozoic margin: Evidence from the Skelton Glacier area, Transantarctic Mountains. Journal of the Geological Society of London 150, 677–82.CrossRefGoogle Scholar
Rubatto, D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology 184, 123–38.CrossRefGoogle Scholar
SACS (South African Committee for Stratigraphy) 1980. Stratigraphy of South Africa. Part I. (compiled by L. E. Kent) Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia, and the Republics of Bophuthatswana, Transkei and Venda. Handbook of the Geological Survey of South Africa, 8, 890 pp.Google Scholar
Sajeev, K., Williams, I. S. & Osanai, Y. 2010. Sensitive high-resolution ion microprobe U–Pb dating and retrograde ultrahigh-temperature metamorphism as exemplified by Sri Lankan granulite. Geology 38, 971–4.CrossRefGoogle Scholar
Schwarz, E. H. L. 1916. Notes on the geology of Natal. Transactions and Proceedings of the Geological Society of South Africa 19, 4653.Google Scholar
Shone, R. W. & Booth, P. W. K. 2005. The Cape Basin, South Africa: a review. Journal of African Earth Science 43, 196210.CrossRefGoogle Scholar
Snelling, N. J. 1962. Age Determination Unit. Overseas Geological Surveys Annual Report (for 1960–1961), pp. 27–35.Google Scholar
Snelling, N. J. 1965. Age Determination Unit. Overseas Geological Surveys Annual Report (for 1964), pp. 28–38.Google Scholar
Snelling, N. J., Johnson, R. L. & Drysdall, A. R. 1972. The geochronology of Zambia. Records, Geological Survey of Zambia, 12, pp. 19–30.Google Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Tangeman, J. A., Mukasa, S. B. & Grunow, A. M. 1996. Zircon U–Pb geochronology of plutonic rocks from the Antarctic Peninsula: confirmation of the presence of unexposed Paleozoic crust. Tectonics 15, 1309–24.CrossRefGoogle Scholar
Thamm, A. G. & Johnson, M. R. 2006. The Cape Supergroup. In: The Geology of South Africa (eds. Johnson, M. R., Anhaeusser, C. R. & Thomas, R. J.), pp. 443–60. The Geology of South Africa, Geological Society of South Africa, Johannesburg/Council for Geoscience, South Africa.Google Scholar
Thomas, R. J. 1988. The petrography of the Oribi Gorge Granitoid Suite: Kibaran charnockitic granitoids from southern Natal. South African Journal of Geology 91, 275–91.Google Scholar
Thomas, R. J., Armstrong, R. A. & Eglington, B. M. 2003. Geochronology of the Sikombe Granite, Transkei, Natal Metamorphic Province, South Africa. South African Journal of Geology 106, 403–8.CrossRefGoogle Scholar
Thomas, R. J., Cornell, D. H. & Armstrong, R. A. 1999. Provenance age and metamorphic history of the Quha Formation, Natal Metamorphic Province: a U-Th-Pb zircon SHRIMP study. South African Journal of Geology 102, 83–8.Google Scholar
Thomas, R. J. & Eglington, B. M. 1990. A Rb-Sr, Sm-Nd and U-Pb zircon isotope study of the Mzumbe Suite, the oldest intrusive granitoid in southern Natal, South Africa. South African Journal of Geology 93, 761–5.Google Scholar
Thomas, R. J., Eglington, B. M. & Bowring, S. A. 1993. Dating the cessation of Kibaran magmatism in Natal, South Africa. Journal of African Earth Science 16, 247–52.CrossRefGoogle Scholar
Thomas, R. J., Eglington, B. M., Bowring, S. A., Retief, E. A. & Walraven, F. 1993. New isotope data from a Late Proterozoic porphyritic granite-charnockite association from Natal, South Africa. Precambrian Research 62, 83101.CrossRefGoogle Scholar
Thomas, R. J., Eglington, B. M. & Kerr, A. 1990. The geology and geochronology of the Belmont pluton and microgranite dykes from the Margate area-the search for Pan-African magmatism in southern Natal. South African Journal of Geology 93, 766–55.Google Scholar
Thomas, R. J., Marshall, C. G. A., Du Plessis, A., Fitch, F. J., Miller, J. A., Von Brunn, V. & Watkeys, M. K. 1992 a. Geological studies in southern Natal and Transkei: Implications for the Cape Orogen. In: Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa (eds De Wit, M. J. & Ransome, I. G. D.), pp. 229–36. Rotterdam, the Netherlands: Balkema.Google Scholar
Thomas, R. J., Marshall, C. G. A., Watkeys, M. K., Fitch, F. J. & Miller, J. A. 1992 b. K–Ar and 40Ar/29Ar dating of the Natal Group, Southeast Africa: a post Pan-Africa molasse? Journal of African Earth Science 15, 453–71.CrossRefGoogle Scholar
Viola, G., Henderson, I. H. C., Bingen, B., Thomas, R. J., Smethurst, M. A. & De Azavedo, S. 2008. Growth and collapse of a deeply eroded orogen: insights from structural and geochronological constraints on the Pan-African evolution of NE Mozambique. Tectonics 27, TC5009, doi: 10.1029/2008TC002284.CrossRefGoogle Scholar
Visser, J. N. J. 1974. The Table Mountain Group: a study in the deposition of quartz arenites on a stable shelf. Transactions and Proceedings of the Geological Society of South Africa 77, 229–37.Google Scholar
Wiedenbeck, M., All, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Von Quadt, A., Roddick, C. & Spiegel, W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analysis. Geostandards Newsletter 19, 123.CrossRefGoogle Scholar
Supplementary material: PDF

Vorster supplementary material S1

Vorster supplementary material

Download Vorster supplementary material S1(PDF)
PDF 1.9 MB