Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T11:40:46.232Z Has data issue: false hasContentIssue false

Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation

Published online by Cambridge University Press:  01 May 2009

James D. Marshall
Affiliation:
Department of Earth Sciences, University of Liverpool, P.O. Box 147, Liverpool L69 3BX, U.K.

Abstract

Stable isotopic data from marine limestones and their constituent fossils and marine cements can provide quantitative evidence for changes in global climate and ocean circulation. Oxygen isotopic data can indicate changes in temperature and ocean composition whereas stratigraphic variation in carbon isotope ratios may reflect changes in the carbon cycle that can be linked to changes in oceanic productivity and atmospheric greenhouse gases. Terrestrial carbonates–meteoric cements, calcretes and speleothems–similarly offer significant potential for understanding the evolution of terrestrial climates by providing evidence for the composition of rainwater and the nature of vegetative cover.

Primary environmental isotopic signals may be obscured by the effects of post-depositional diagenetic alteration. Cementation and replacement reactions can take place in a wide range of diagenetic environments; the diagenetic history of an individual limestone is determined by a combination of its mineralogical diagenetic potential and depositional setting, together with subsequent changes in relative sea-level and burial history. Carbon isotopic values are less prone to alteration during diagenesis than oxygen values but shifts can be significant where organogenic carbon is incorporated. Linear covariation of carbon and oxygen values is not a reliable indicator of diagenetic alteration: water-rock interaction and fluid mixing may produce non-linear distributions.

Attempts to determine long-term changes in climatic and oceanographie conditions through isotope stratigraphy of shallow-water limestones must include an assessment of the diagenetic history of the materials analysed. Pétrographic examination using conventional microscopy backed up, where appropriate, by cathodoluminescence and scanning electron microscopy together with elemental and strontium isotopic analysis can help to identify the effects of diagenetic alteration. Where material with a range of different degrees of alteration is preserved in the same sediment it may be possible to compare patterns of isotopic and elemental variation and to attempt to unravel the effects of diagenesis in order to determine primary, environmental, isotopic signals. Recent research has shown that these techniques can be successfully employed in both Phanerozoic and Precambrian sediments.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. F. & Arthur, M. A. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and palaeoenvironmental problems. In Stable Isotopes in Sedimentary Geology (eds Arthur, M. A. et al.), pp. I1–I-151. Society of Economic Palaeontologists and Mineralogists Short Course no. 10.Google Scholar
Arthur, M. A., Schlanger, S. O. & Jenkyns, H. C. 1987. The Cenomanian-Turonian anoxic event. II. Palaeoceanographic controls on organic-matter production and preservation. In Marine Petroleum Source Rocks (eds Arthur, J. and Fleet, A. J.), pp. 401420. Geological Society Special Publication no. 26.Google Scholar
Baker, P. A., Gieskes, J. M. & Elderfield, H. 1982. Diagenesis of carbonates in deep-sea sediments–evidence from Sr/Ca ratios and interstitial dissolved Sr++ data. Journal of Sedimentary Petrology 52, 7182.Google Scholar
Banner, J. L. & Hanson, G. N. 1990. Calculation of simultaneous isotopic and trace element variations during water–rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta 54, 3123–37.CrossRefGoogle Scholar
Barbin, V., Ramseyer, K., Debenay, J. P., Schein, E., Roux, M. & Decrouez, D. 1991. Cathodoluminescence of Recent biogenic carbonates: an environmental and ontogenetic fingerprint. Geological Magazine 128, 1926.CrossRefGoogle Scholar
Brand, U. & Morrison, J. O. 1987. Biogeochemistry of fossil marine invertebrates. Geoscience Canada 14, 85107.Google Scholar
Brand, U. & Veizer, J. 1980. Chemical diagenesis of a multicomponent carbonate system. 1. Trace elements. Journal of Sedimentary Petrology 50, 1219–36.Google Scholar
Brand, U. & Veizer, J. 1981. Chemical diagenesis of a multicomponent carbonate system. 2. Stable isotopes. Journal of Sedimentary Petrology 50, 987–97.Google Scholar
Beauchamp, B., Oldershaw, A. E. & Krouse, H. R. 1987. Upper carboniferous to Upper Permian 13C-enriched primary carbonates in the Sverdrup basin, Canadian Arctic: Comparisons to coeval western North American ocean margins. Chemical Geology (Isotope Geoscience section) 65, 391413.CrossRefGoogle Scholar
Berger, W. H. & Vincent, E. 1986. Deep-sea carbonates: reading the carbon-isotope signal. Geologisches Rundschau 75, 249–69.CrossRefGoogle Scholar
Boer, P. L. De 1986. Changes in the organic carbon burial during the early Cretaceous. In North Atlahtic Palaeoceanography (eds. Summerhayes, P. and Shackleton, N. J.), pp. 321–31. Geological Society Special Publication no. 21.Google Scholar
Buchardt, B. & Fritz, P. 1980. Environmental isotopes as environmental and climatological indicators. In Handbook of Environmental Isotope Geochemistry, volume 3. The Marine Environment A (eds Fritz, P. and Fontes, J. C.), pp. 473504. Amsterdam: Elsevier.Google Scholar
Carpenter, S. J., Lohmann, K. C., Holden, P., Walter, L. M., Huston, T. J. & Halliday, A. N. 1991. δ18O values, δ87Sr/86Sr and Sr/Mg ratios of Late Devonian abiotic marine calcite: implications for the composition of ancient seawater. Geochimica et Cosmochimica Acta 55, 19912010.CrossRefGoogle Scholar
Cerling, T. E. 1984. The stable isotopic composition of modern carbonate and its relationship to climate. Earth and Planetary Science Letters 71, 229–40.CrossRefGoogle Scholar
Cerling, T. E. 1991. Carbon dioxide in the atmosphere, evidence from Cenozoic and Mesozoic paleosols. American Journal of Science 291, 377400.CrossRefGoogle Scholar
Coleman, M. L. 1985. Geochemistry of diagenetic non-silicate minerals: kinetic considerations. Philosophical Transactions of the Royal Society of London A 315, 3956.Google Scholar
Curtis, C. D. 1977. Sedimentary geochemistry: environments and processes dominated by the involvement of an aqueous phase. Philosophical Transactions of the Royal Society of London A 286, 353–72.Google Scholar
Craig, H. 1965. The Measurement of Oxygen Isotope Palaeotemperatures. In Stable Isotopes in Oceanographic Studies and Palaeotemperatures (ed. Tongiorgi, E.), pp. 161–82. Consiglio Nazionale delle Richerche, Laboratorio di Geologia Nucleare, Pisa.Google Scholar
Craig, H. & Gordon, L. I. 1965. Deuterium and oxygen-18 variations in the coean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Palaeotemperatures (ed. Tongiorgi, E.), pp. 9130. Consiglio Nazionale delle Richerche, Laboratorio di Geologia Nucleare, Pisa.Google Scholar
Crowley, T. J. & North, G. R. 1991. Paleoclimatology. Oxford University Press.Google Scholar
Delaney, M. L. 1989. Extinctions and carbon cycling. Nature 337, 1819.CrossRefGoogle Scholar
Dickson, J. A. D. & Coleman, M. L. 1980. Changes in carbon and oxygen isotope composition during limestone diagenesis. Sedimentology 27, 107–18.CrossRefGoogle Scholar
Ditchfield, P. & Marshall, J. D. 1989. Isotopic variation in rhythmically bedded chalks: palaeotemperature variation in the Upper Cretaceous. Geology 17, 842–5.2.3.CO;2>CrossRefGoogle Scholar
Emery, D., Hudson, J. D., Marshall, J. D. & Dickson, J. A. D. 1988. The origin of late spar cements in the Lincolnshire Limestone, Jurassic of central England. Journal of the Geological Society, London 145, 621–33.CrossRefGoogle Scholar
Emrich, K., Ehhalt, D. H. & Vogel, J. C. 1970. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth and Planetary Science Letters 8, 363–71.CrossRefGoogle Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. 1953. Revised carbonate–water isotopic temperature scale. Bulletin of the Geological Society of America 64, 1315–26.CrossRefGoogle Scholar
Fairchild, I. J., Marshall, J. D. & Bertrand-Sarfati, J. 1990. Stratigraphic shifts in carbon isotopes from proterozoic stromatolitic carbonates (Mauritania): influences of primary mineralogy and diagenesis. American Journal of Science 290–A, 4679.Google Scholar
Friedman, I. & O'Neil, J. R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. In Data of Geochemistry (ed. Fleicher, M.), pp. KK1–KK12+figs. Geological Survey Professional paper 440-KK.Google Scholar
Gautier, D. L. & Claypool, G. E. 1984. Interpretation of methanic diagenesis in ancient sediments by analogy with processes in modern diagenetic environments. In Clastic Diagenesis (eds McDonald, D. A. and Surdam, R. C.), pp. 111–23. American Association of Petroleum Geologists Memoir no. 37.Google Scholar
Giles, M. R. & Marshall, J. D. 1986. Constraints on the development of secondary porosity in the subsurface: re-evaluation of processes. Marine and Petroleum Geology 3, 243–55.CrossRefGoogle Scholar
Grossman, E. L. & ku, T. L. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology 59, 5974.CrossRefGoogle Scholar
Hanor, J. S. 1987. Origin and Migration of Subsurface Sedimentary Brines. Society of Economic Palaeontologists and Mineralogists, Short Course Notes No. 21, 247 pp.CrossRefGoogle Scholar
Hays, P. D. & Grossman, E. L. 1991. Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geology 19, 441–4.2.3.CO;2>CrossRefGoogle Scholar
Hudson, J. D. 1977. Stable isotopes and limestone lithific-ation. Journal of the Geological Society, London 133, 637–60.CrossRefGoogle Scholar
Hudson, J. D. & Anderson, T. F. 1989. Ocean temperatures and isotopic compositions through time. Transactions of the Royal Society of Edinburgh: Earth Sciences 80, 183–92.CrossRefGoogle Scholar
James, N. P. & Choquette, P. W. 1984. Diagenesis No. 9. Limestones–the meteoric diagenetic environment. Geoscience Canada 11, 161–94.Google Scholar
Jenkyns, H. C. 1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, London 137, 171–88.CrossRefGoogle Scholar
Jenkyns, H. C. & Clayton, C.J. 1986. Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology 33, 87106.CrossRefGoogle Scholar
Jux, U. & Manze, U. 1977. Glazialeustatische gesteurte Sedimentationsablaufe auf dem kaledonische Schelfe (Mittelschweden) an der Wende Ordovizium–Silur. Neues Jahrbuch für Geologie und Paläontologie Monatsheft 3, 155–80.Google Scholar
Kroopnick, P. M., Margolis, S. V. & Wong, C. S. 1977. δ13C variations in marine carbonate sediments as indicators of the CO2 balance between the atmosphere and oceans. In The Fate of Fossil Fuel CO2 in the Oceans (eds Anderson, N. R. and Malahoff, A.), pp. 295321. New York: Plenum Press.CrossRefGoogle Scholar
Kump, L. R. 1991. Interpreting carbon-isotope excursions: Strangelove oceans. Geology 19, 299302.2.3.CO;2>CrossRefGoogle Scholar
Land, L. S. 1980. The isotopic and trace element geochemistry of dolomite: the state of the art. In Concepts and Models of Dolomitization (eds Zenger, D. H., Dunham, J. B. and Ethington, R. L.), pp. 87110. Society of Economic Palaeontologists and Mineralogists Special Publication no. 28.CrossRefGoogle Scholar
Land, L. S. 1986. Environments of Limestone and dolomite diagenesis: some geochemical considerations. Colorado School of Mines Quarterly 81, 2641.Google Scholar
Land, L. S. 1989. The carbon and oxygen isotopic chemistry of surficial Holocene shallow marine sediment and Quaternary Limestone and dolomite. In Handbook of Environmental Isotope Geochemistry, Volume 3. The Marine Environment, A (eds Fritz, P. and Fontes, J. C.), pp. 191217. Amsterdam: Elsevier.Google Scholar
Lasemi, Z. & Sandberg, P. A. 1984. Transformation of aragonite-dominated lime muds to microcrystalline limestones. Geology 12, 420–3.2.0.CO;2>CrossRefGoogle Scholar
Lohmann, K. C. 1988. Geochemical patterns of meteoric diagenetic systems and their application to studies of palaeokarst. In Palaeokarst (eds James, N. P. and Choquette, P. W.), pp. 5880. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Lohmann, K. C. & Walker, J. C. G. 1989. The record of Phanerozoic abiotic marine calcite cements. Geophysical Research Letters 16, 319–22.CrossRefGoogle Scholar
Ludvigson, G. A., Witzke, B. J., Plocher, O. W., Gonzalez, L. A. & Jacobson, S. R. 1991. Chemo-stratigraphic implications of submarine carbonate diagenesis in the Ordovician Decorah Formation (Galena Group), midcontinent USA. Geological Society of America, Annual Meeting: Program with Abstracts, Abstract no. 4045.Google Scholar
Marshall, J. D. 1981. Stable isotope evidence for the environment of lithification of some Tethyan limestones. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 4, 211–24.CrossRefGoogle Scholar
Marshall, J. D. & Ashton, M. 1980. Isotopic and trace element evidence for submarine lithification of hardgrounds in the Jurassic of eastern England. Sedimentology 27, 271–89.CrossRefGoogle Scholar
Marshall, J. D. & Middleton, P. D. 1990. Changes in marine isotopic composition and the late Ordovician glaciation. Journal of the Geological Society, London 147, 14.CrossRefGoogle Scholar
Meyers, W. J. 1989. Trace element and isotope geochemistry of zoned calcite cements, Lake Valley Formation (Mississippian, New Mexico): insights from water–rock interaction modelling. Sedimentary Geology 65, 355–70.CrossRefGoogle Scholar
Middleton, P. D., Marshall, J. D. & Brenchley, P. J. 1991. Evidence for isotopic changes associated with the Late Ordovician glaciation from brachiopods and marine cements from central Sweden. In Advances in Ordovician Geology (eds Barnes, C. R. and Williams, S. H.), pp. 313–23. Geological Survey of Canada, Paper 90–9.Google Scholar
Morrison, J. O. & Brand, U. 1986. Geochemistry of recent marine invertebrates. Geoscience Canada 13, 237–54.Google Scholar
Muchez, P., Viaene, W., Keppens, E., Marshall, J. D. & Vandenberghe, N. 1991. Vein cements and the evolution of subsurface fluids in the Visean of the Campine Basin (Poederlee borehole, Belgium). Journal of the Geological Society, London 148, 1005–17.CrossRefGoogle Scholar
O'neil, J. R., Clayton, R. N. & Mayeda, T. K. 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics 51, 5547–58.CrossRefGoogle Scholar
Pirrie, D. & Marshall, J. D. 1990 a. Diagenesis of Inoceramus and late Cretaceous palaeoenvironmental geochemistry: a case study from James Ross Island, Antarctica. Palaios 5, 336–45.CrossRefGoogle Scholar
Pirrie, D. & Marshall, J. D. 1990 b. High-palaeolatitude Late Cretaceous palaeotemperatures: new data from James Ross Island, Antarctica. Geology 18, 31–4.2.3.CO;2>CrossRefGoogle Scholar
Popp, B. N., Anderson, T. F. & Sandberg, P. A. 1986. Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geological Society of America Bulletin 97, 1262–9.2.0.CO;2>CrossRefGoogle Scholar
Railsback, L. B. 1990. Influence of changing deep ocean circulation on the Phanerozoic oxygen isotopic record. Geochimica et Cosmochimica Acta 54, 1501–9.CrossRefGoogle Scholar
Railsback, L. B., Ackerly, S. C., Anderson, T. F. & Cisne, J. L. 1990. Palaeontological and isotope evidence for warm saline deep waters in Ordovician oceans. Nature 343, 156–9.CrossRefGoogle Scholar
Railsback, L. B. & Anderson, T. F. 1989. Paleoceanographic modelling of temperature–salinity profiles from stable isotopic data. Paleoceanography 4, 585–91.CrossRefGoogle Scholar
Raiswell, R. 1987. Non-steady state diagenesis and the origin of concretions and nodular limestones. In Diagenesis of Sedimentary Sequences (ed. Marshall, J. D.), pp. 4154. Geological Society of London Special Publication no. 36.Google Scholar
Rush, P. F. & Chafetz, H. S. 1990. Fabric-retentive, non-luminescent brachiopods as indicators of original δ13C and δ18C: a test. Journal of Sedimentary Petrology 60, 968–81.Google Scholar
Schlanger, S. O., Arthur, M. A., Jenkyns, H. C. & Scholle, P. A. 1987. The Cenomanian–Turonian anoxic event. I. Stratigraphy and distribution of organic-rich beds and the marine δ13C excursion. In Marine Petroleum Source Rocks (eds Brooks, J. and Fleet, A. J.), pp. 371–9. Geological Society Special Publication no. 26.Google Scholar
Shackleton, N. J. 1987. The carbon isotope record of the Cenozoic: history of organic carbon burial and of oxygen in the coean and atmosphere. In Marine Petroleum Source Rocks (eds Brooks, J. and Fleet, A. J.), pp. 423–34. Geological Society Special Publication no. 26.Google Scholar
Spicer, R. A. & Corfield, R. M. 1992. A review of terrestrial and marine climates in the Cretaceous with implications for modelling the ‘Greenhouse Earth’. Geological Magazine 129, 169–80.CrossRefGoogle Scholar
Tarutani, T., Clayton, R. N. & Mayeda, T. K. 1969. The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochimica et Cosmochimica Acta 33, 987–96.CrossRefGoogle Scholar
Tucker, M. E. & Wright, V. P. (EDS) 1990. Carbonate Sedimentology. Oxford: Blackwell Scientific, 482 pp.CrossRefGoogle Scholar
Turner, J. V. 1982. Kinetic fractionation of carbon-13 during calcium carbonate precipitation. Geochimica et Cosmochimica Acta 46, 1183–91.CrossRefGoogle Scholar
Veizer, J. 1983 a. Trace elements and isotopes in sedimentary carbonates. In Carbonates: Mineralogy and Chemistry (ed. Reeder, R. J.), pp. 265–99. Reviews in Mineralogy Volume 11. Mineralogical Society of America.CrossRefGoogle Scholar
Veizer, J. 1983 b. Chemical diagenesis of carbonates: theory and application of trace element technique. In Stable Isotopes in Sedimentary Geology (eds Arthur, M. A. et al.), pp. 3–1–3–100. Society of Economic Palaeontologists and Mineralogists Short Course no. 10.Google Scholar
Walker, J. C. & Lohmann, K. C. 1989. Why the oxygen isotopic composition of sea water changes with time. Geophysical Research Letters 16, 323–6.CrossRefGoogle Scholar
Wefer, G. & Berger, W. H. 1991. Isotope palaeontology: growth and composition of extant calcareous species. Marine Geology 100, 207–48.CrossRefGoogle Scholar
Wetzel, A. 1989. Influence of heat flow on ooze/chalk cementation: quantification from consolidation parameters in DSDP sites 504 and 505 sediments. Journal of Sedimentary Petrology 59, 539–47.Google Scholar
Wright, V. P. & Vanstone, S.D. 1991. Assessing the carbon dioxide content of ancient atmospheres using palaeo-calcretes: theoretical and empirical constraints. Journal of the Geological Society, London 148, 945–7.CrossRefGoogle Scholar
Zachos, J. C., Arthur, M. J. & Dean, W. E. 1989. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337, 61–4.CrossRefGoogle Scholar