Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T23:22:51.023Z Has data issue: false hasContentIssue false

Peridotites and basaltic rocks within an ophiolitic mélange from the SW igneous province of Puerto Rico: relation to the evolution of the Caribbean Plate

Published online by Cambridge University Press:  02 February 2016

NADJA OMARA CINTRON FRANQUI
Affiliation:
Department of Geology and Earth Environmental Sciences, Chungnam National University, 99 Daehangno, Yuseong-gu, Daejeon 34134, South Korea
SUNG HI CHOI*
Affiliation:
Department of Geology and Earth Environmental Sciences, Chungnam National University, 99 Daehangno, Yuseong-gu, Daejeon 34134, South Korea
DER-CHUEN LEE
Affiliation:
Institute of Earth Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan, ROC
*
Author for correspondence: [email protected]

Abstract

The geology of Puerto Rico is divided into three regions: the north, central and SW igneous provinces. Characterized by its Jurassic ophiolitic mélange basement, lithology of the SW Igneous Province (SIP) is not related to either of the other two provinces. The ophiolitic mélange is exposed in three peridotite belts: Monte del Estado, Rio Guanajibo and Sierra Bermeja. We present geochemical data to identify the tectonic setting of the SIP peridotite formation and its relation to the evolution of the Caribbean Plate. Comparisons of spinel Cr no. (13–21), Mg no. (63.3–69.6) and TiO2 suggest an abyssal peridotite origin; however, only Sierra Bermeja presents high TiO2 characteristics of a mid-ocean-ridge-basalt- (MORB-) like melt reaction. Temperatures determined with two-pyroxene geothermometers indicated a cold thermal regime of c. 800–1050°C, with characteristics of large-offset transform fault abyssal peridotites. The geochemistry and Sr–Nd–Hf–Pb isotopic compositions of basalts within the mélange were also analysed. Las Palmas amphibolites exhibited normal-MORB-like rare earth element (REE) and trace-element patterns, whereas metabasalts and Lower Cajul basalts exhibited island-arc tholeiitic-like patterns. Highly radiogenic Sr isotopes (0.70339–0.70562) of the basalts suggest seawater alteration; however, Pb–Pb and Nd–Hf isotope correlations represent the primary compositions of a Pacific/Atlantic MORB source for the amphibolites, metabasalts and Lower Cajul basalts. We propose that the SIP ophiolitic mélange was formed along a large-offset transform fault, which initiated subduction and preserved both proto-Pacific and proto-Caribbean lithospheric mantle. Younger Upper Cajul basalts exhibited enriched-MORB-like geochemical and isotopic signatures, which can be attributed to a tectonized Caribbean ocean plateau.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R. N., Jackson, T. A. & Scott, P. W. 1999. The serpentinization of peridotite from Cedar Valley, Jamaica. International Geology Review 41, 836–44.Google Scholar
Arai, S. 1994. Characterization of spinel peridotites by olivine–spinel compositional relationships: review and interpretation. Chemical Geology 113, 191204.CrossRefGoogle Scholar
Aswad, K. J. A., Aziz, N. R. H. & Koyi, H. A. 2011. Cr-spinel compositions in serpentinites and their implications for the petrogenetic history of the Zagros Suture Zone, Kurdistan Region, Iraq. Geological Magazine 148, 802–18.Google Scholar
Bach, W., Hegner, E., Erzinger, J. & Satir, M. 1994. Chemical and isotopic variations along the superfast spreading East Pacific Rise from 6 to 30°S. Contributions to Mineralogy and Petrology 116, 365–80.Google Scholar
Bandini, A. N., Baumgartner, P. O., Flores, K., Dumitrica, P., Hochard, C., Stampfli, G. M. & Jackett, S. J. 2011. Aalenian to Cenomanian Radiolaria of the Bermeja complex (Puerto Rico) and Pacific origin of radiolarites on the Caribbean plate. Swiss Journal of Geoscience 104, 367408.CrossRefGoogle Scholar
Bedini, R. M. & Bodinier, J.-L. 1999. Distribution of incompatible trace elements between the constituent of spinel peridotite xenoliths: ICP-MS data from the East African Rift. Geochimica et Cosmochimica Acta 63, 3883–900.Google Scholar
Blichert-Toft, J. & Albarède, F. 1997. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth and Planetary Science Letters 148, 243–58.CrossRefGoogle Scholar
Bodinier, J.-L. & Godard, M. 2003. Orogenic, ophiolitic, and abyssal peridotites. In The Mantle and Core (eds Carlson, R. W., Holland, H. D. & Turekian, K. K.), pp. 103–70. Elsevier-Pergamum, Treatise on Geochemistry Vol. 2.Google Scholar
Bonatti, E., Seyler, M. & Sushevskaya, N. 1993. A cold suboceanic mantle belt at the Earth's equator. Science 261, 315–20.Google Scholar
Boschman, L. M., van Hinsbergen, D. J. J., Torsvik, T. H., Spakman, W. & Pindell, J. L. 2014. Kinematic reconstruction of the Caribbean region since the Early Jurassic. Earth-Science Reviews 138, 102–36.Google Scholar
Bourgois, J., Desmet, A., Tournon, J. & Aubouin, J. 1984. Mafic and ultramafic rocks of LEG 84: Petrology and Mineralogy. Ophioliti 9, 2742.Google Scholar
Brey, G. P. & Köhler, T. P. 1990. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology 31, 1353–78.CrossRefGoogle Scholar
Brown, E., Colling, A., Park, D., Phillips, J., Rothery, D. & Wright, J. 1997. Seawater: Its Composition, Properties and Behavior. Milton Keynes: Open University, Open University Course Team, pp. 8687.Google Scholar
Brueckner, H. H., Avé Lallemant, H. G., Sisson, V. B., Harlow, G. E., Hemming, S. R., Martens, U., Tsujimori, T. & Sorensen, S. S. 2009. Metamorphic reworking of a high pressure-low temperature mélange along the Motagua fault, Guatemala: a record of Neocomian and Maastrichtian transpressional tectonics. Earth and Planetary Science Letters 284, 228–35.CrossRefGoogle Scholar
Brunelli, D., Syler, M., Ciprianti, A., Ottolini, L. & Bonatti, E. 2006. Discontinuous melt extraction and weak refertilization of mantle peridotites at the Vema lithospheric section (Mid-Atlantic Ridge). Journal of Petrology 7, 745–71.CrossRefGoogle Scholar
Burke, K. 1988. Tectonic evolution of the Caribbean. Annual Review of Earth and Planetary Sciences 16, 201–30.Google Scholar
Burke, K., Fox, P. G. & Şengőr, A. M. C. 1978. Buoyant ocean floor and the origin of the Caribbean. Journal of Geophysical Research 83, 3949–54.CrossRefGoogle Scholar
Casey, J. F. & Dewey, J. F. 1984. Initiation of subduction zones along transform and accreting plate boundaries, triple-junction evolution, and forearc spreading centres—implications for ophiolitic geology and obduction. In Ophiolites and Oceanic Lithosphere (eds Gass, I. G., Lippard, S. J. & Shelton, A. W.), pp. 269–90. Geological Society of London, Special Publication no. 13.Google Scholar
Chauvel, C. & Blichert-Toft, J. 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters 90, 137–51.Google Scholar
Choi, S. H., Mukasa, S. B., Andronikov, A. V. & Marcano, M. C. 2007. Extreme Sr-Nd-Pb-Hf isotopic compositions exhibited by the Tinaquillo peridotite massif, Northern Venezuela: implications for geodynamic setting. Contributions to Mineralogy and Petrology 153, 443–63.Google Scholar
Choi, S. H., Mukasa, S. B. & Shervais, J. W. 2008. Initiation of Franciscan subduction along large-offset fracture zone: Evidence from mantle peridotites, Stonyford, California. Geology 36 (8), 595–98.Google Scholar
Choi, S. H., Mukasa, S. B., Zhou, X. H., Xian, X. H. & Andronikov, A. V. 2008. Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China. Chemical Geology 248, 4061.Google Scholar
Coleman, R. G. 1977. Ophiolites: Ancient Oceanic Lithosphere? Berlin, Heidelberg, New York: Springer Verlag, 229 pp.CrossRefGoogle Scholar
Cox, D. P., Marvin, R. F., M'Gonigle, J. W., McIntyre, D. H. & Rogers, C. L. 1977. Potassium–argon geochronology of some metamorphic, igneous, and hydrothermal events in Puerto Rico and the Virgin Islands. US Geological Survey Journal of Research 5, 689703.Google Scholar
Debaille, V., Blichert-Toft, J., Agranier, A., Doucelance, R., Schiano, P. & Albarède, F. 2006. Geochemical component relationship in MORB from the Mid-Atlantic Ridge, 22–35°N. Earth and Planetary Science Letters 241, 884–62.Google Scholar
Denyer, P. & Gazel, E. 2009. The Costa Rican Jurassic to Miocene oceanic complexes: Origin, tectonics and relations. Journal of South American Earth Sciences 28, 429–42.Google Scholar
Dick, H. J. B. & Bullen, T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 5476.Google Scholar
Dilek, Y., Moores, E., Elthin, D. & Nicolas, A. 2000. Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Boulder, CO: Geological Society of America.CrossRefGoogle Scholar
Donnelly, T. W. 1985. Mesozoic and Cenozoic plate evolution of the Caribbean region. In The Great American Biotic Interchange (eds Stehli, F. G. & Webb, S. D.), pp. 89121. New York: Springer.CrossRefGoogle Scholar
Dostal, J., Dupuy, C. & Pudoignon, P. 1996. Distribution of boron, lithium and beryllium in ocean island basalts from French Polynesia: implications for the B/Be and Li/Be ratios as tracers of subducted components. Mineralogical Magazine 60, 563–80.Google Scholar
Duncan, R. A. & Hargraves, R. B. 1984. Plate tectonic evolution of the Caribbean region in the mantle reference frame. In The Caribbean–South American Plate Boundary and Regional Tectonics (eds Bonini, W. E., Hargraves, R. B. & Shagam, R.), pp. 8193. Geological Society of America, Memoir no. 162.Google Scholar
Eggins, S. M., Rudnick, R. L. & McDonough, W. F. 1998. The composition of peridotites and their minerals: a laser-ablation ICP-MS study. Earth and Planetary Science Letters 154, 5371.Google Scholar
Escuder-Viruete, J., Castillo-Carrion, M. & Perez-Estaun, A. 2014. Magmatic relationships between depleted mantle harzburgites, boninitic cumulate gabbros and subduction-related tholeiitic basalts in Puerto Plata ophiolitic complex, Dominican Republic: Implications for the birth of the Caribbean island-arc. Lithos 196–197, 261–80.Google Scholar
Frey, F. A., Green, D. H. & Roy, S. D. 1978. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology 19, 463513.Google Scholar
Gazel, E., Abbott, R. N. Jr. & Draper, G. 2011. Garnet-bearing ultramafic rocks from the Dominican Republic: Fossil mantle plume fragments in an ultra high pressure oceanic complex? Lithos 125, 393404.Google Scholar
Geldmacher, J., Hanan, B. B., Blichert-Toft, J., Harpp, K., Hoernle, K., Hauff, F., Werner, R. & Kerr, A. C. 2003. Hafnium isotopic variations in volcanic rocks from the Caribbean Large Igneous Province and Galápagos hot spot tracks. Geochemistry, Geophysics, Geosystems, published online 19 July 2003. doi: 10.1029/2002GC000477.Google Scholar
Ghosh, N., Hall, S. A. & Casey, J. F. 1984. Seafloor spreading magnetic anomalies in the Venezuelan Basin. In The Caribbean–South American Plate Boundary and Regional Tectonics (eds Bonini, W., Hargraves, R. B. & Shagam, R.), pp. 5480. Geological Society of America, Memoir no. 162.Google Scholar
Giunta, G., Beccaluva, L., Coltorti, M., Mortellaro, D. & Siena, F. 2002. The peri-Caribbean ophiolites: structure, tectono-magmatic significance and geodynamic implications. Caribbean Journal of Earth Science 36, 120.Google Scholar
Hamlyn, P. R. & Bonatti, E. 1980. Petrology of mantle-derived ultramafics from the Owen fracture, northwest Indian Ocean: Implications for the nature of the oceanic upper mantle. Earth and Planetary Science Letters 48, 6579.Google Scholar
Hart, S. R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–57.Google Scholar
Hart, S. R. & Zindler, A. 1986. In search of a bulk-Earth composition. Chemical Geology 57, 247–67.Google Scholar
Hastie, A. R., Kerr, A., Mitchell, S. & Millar, I. L. 2008. Geochemistry and petrogenesis of Cretaceous oceanic plateau lavas in eastern Jamaica. Lithos 101, 323–43.CrossRefGoogle Scholar
Hauff, F., Hoernle, K., Tilton, G., Graham, D. W. & Kerr, A. C. 2000. Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large Igneous Province. Earth and Planetary Science Letters 174, 247–63.Google Scholar
Hauff, F., Hoernle, K., Van den Bogaard, P., Alvarado, G. & Garbe-Schönberg, D. 1999. Age and geochemistry of basaltic complexes in western Costa Rica: Contributions to the geotectonic evolution of Central America. Geochemistry, Geophysics, Geosystems, published online 30 May 2000. doi: 10.1029/1999GC000020.Google Scholar
Hellebrand, E., Snow, J. E., Dick, H. J. B. & Hofmann, A. W. 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410, 677–81.Google Scholar
Hellebrand, E., Snow, J. E. & Mühe, R. 2002. Mantle melting beneath Gakkel Ridge (Artic Ocean): abyssal peridotite spinel compositions. Chemical Geology 182, 227–35.Google Scholar
Herzberg, C. & Gazel, E. 2009. Petrological evidence for secular cooling in mantle plumes. Nature 458, 619–22.Google Scholar
Hess, H. H. & Otalora, G. 1964. Mineralogical and chemical composition of the Mayaguez serpentinite cores. In A Study of Serpentinite: The AMSOC Core Hole near Mayaguez, Puerto Rico (ed. Burk, C. A.), pp. 152–69. Washington, DC: National Academy of Science NSF Pub.Google Scholar
Ito, E., White, W. & Gopel, C. 1987. The O, Sr, Nd and Pb isotope geochemistry of MORB. Chemical Geology 62, 157–76.Google Scholar
Jagoutz, E., Palme, H., Blum, H., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V. & Wanke, H. 1979. The abundances of major, minor and trace elements in the Earth's mantle as derived from primitive ultramafic nodules. In Proceedings of 10th Lunar Planetary Science Conference 2, 2031–50. New York: Pergamon Press.Google Scholar
Jansma, P. E., Mattioli, G. S., Lopez, A., DeMets, C., Dixon, T. H., Mann, P. & Calais, E. 2000. Neotectonics of Puerto Rico and the Virgin Islands, northeastern Caribbean, from GPS geodesy. Tectonics 19, 1021–37.Google Scholar
Jolly, W. T., Lidiak, E. G. & Dickin, A. P. 2008 a. The case for persistent southwest-dipping Cretaceous convergence in the northeast Antilles: geochemistry, melting models, and tectonic implications. Geological Society of America Bulletin 120, 1036–52.Google Scholar
Jolly, W. T., Lidiak, E. G. & Dickin, A. P. 2008 b. Bimodal volcanism in northeast Puerto Rico and the Virgin Islands (Greater Antilles Island Arc): genetic link with Cretaceous subduction of the mid-Atlantic ridge Caribbean spur. Lithos 103, 393414.Google Scholar
Jolly, W. T., Lidiak, E. G., Schellekens, J. H. & Santos, H. 1998. Volcanism, tectonics, and stratigraphy correlations in Puerto Rico. Geological Society of America 322, 134.Google Scholar
Jolly, W. T., Schellekens, J. H. & Dickin, A. P. 2007. High-Mg andesites and related lavas from the southwest Puerto Rico (Greater Antilles Island Arc): Petrogenic links with emplacement of the Late Cretaceous Caribbean mantle plume. Lithos 98, 126.CrossRefGoogle Scholar
Karson, J. A., Cannat, M., Miller, D. J. & Elthon, D. 1997. Mid-Atlantic Ridge: Leg 153, Sites 920–924. In Proceedings of the Ocean Drilling Program, Scientific Results. Oceanic Drilling Program no. 153, 577 pp.Google Scholar
Kempton, P. D., Fitton, J. G., Saunders, A. D., Nowel, G. M., Taylor, R. N., Hardarson, B. S. & Pearson, G. 2000. The Iceland plume in space and time: a Sr–Nd–Pb–Hf study of the North Atlantic rifted margin. Earth and Planetary Science Letters 177, 255–71.Google Scholar
Kerr, A. C. & Tarney, J. 2005. Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two late Cretaceous oceanic plateaus. Geology 33, 269–72.Google Scholar
Kogiso, T., Tatsumi, Y. & Nakano, S. 1997. Trace element transport during dehydration processes in the subducted oceanic crust: 1. experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters 148, 193205.Google Scholar
Köhler, T. P. & Brey, G. P. 1990. Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochimica et Cosmochimica Acta 54, 2375–88.CrossRefGoogle Scholar
Laó-Dávila, D. A. 2014. Collisional zones in Puerto Rico and the northern Caribbean. Journal of South American Earth Sciences 54, 119.Google Scholar
Laó-Dávila, D. A., Llernadi-Román, P. A. & Anderson, T. H. 2012. Cretaceous–Paleogene thrust emplacement of serpentinite in southwestern Puerto Rico. Geological Society of America Bulletin 124, 1169–90.Google Scholar
Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M. J., Sabine, P. A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A. R. & Zanettin, B. (eds) 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell.Google Scholar
Lidiak, E. G., Jolly, W. T. & Dickin, A. P. 2011. Pre-arc basement complex and overlying island arc strata, Southwestern Puerto Rico: overview, geologic evolution, and revised data bases. Geological Acta 9, 273–87.Google Scholar
Madrigal, P., Gazel, E., Denyer, P., Smith, I., Jicha, B., Flores, K. E., Coleman, D. & Snow, J. 2015. A melt-focusing zone in the lithospheric mantle preserved in the Santa Elena Ophiolite, Costa Rica. Lithos 230, 189205.Google Scholar
Mahoney, J. J., Sinton, J. M., Kurz, M. D., Macdougall, J. D., Spencer, K. J. & Lugmair, G. W. 1994. Isotope and trace element characteristics of a super-fast spreading ridge: East Pacific rise, 13–23°S. Earth and Planetary Science Letters 121, 173–93.Google Scholar
Mamberti, M., Lapierre, H., Bosch, D., Jaillard, E., Ethien, R., Hernandez, J. & Polve, M. 2003. Accreted fragments of the Late Cretaceous Caribbean–Colombian Plateau in Ecuador. Lithos 66, 173–99.Google Scholar
Marchesi, C., Jolly, W. T., Lewis, J. F., Garrido, C. J., Proenza, J. A. & Lidiak, E. G. 2011. Petrogenesis of fertile mantle peridotites from the Monte del Estado Massif (Southwest Puerto Rico): a preserved section of Proto-Caribbean lithospheric mantle? Geological Acta 9, 286306.Google Scholar
Mattson, P. H. 1960. Geology of the Mayagüez area, Puerto Rico. Geological Society of America Bulletin 71, 319–62.Google Scholar
Mattson, P. H. & Pessagno, E. A. Jr 1979. Jurassic and early Cretaceous radiolarians in Puerto Rican ophiolite-tectonic implications. Geology 7, 440–4.Google Scholar
Meschede, M. & Frisch, W. 1998. A plate-tectonic model for the Mesozoic and Early Cenozoic history of the Caribbean plate. Tectonophysics 296, 269–91.Google Scholar
Montgomery, H. M., Pessagno, E. A. Jr. & Pindell, J. L. 1994. A 195 Ma terrane in a 165 Ma sea: Pacific origin of the Caribbean plate. Geological Society of America Today 4, 16.Google Scholar
Mukasa, S. B., Shervais, J. W., Wilshire, H. G. & Nielson, J. E. 1991. Intrinsic Nd, Pb, and Sr isotopic heterogeneities exhibited by the Lherz alpine peridotite massif, French Pyrenees. Journal of Petrology, Special Lherzolite Issue, 117–34.Google Scholar
Münker, C., Weyer, S., Scherer, E. & Mezger, K. 2001. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochemistry, Geophysics, Geosystems, published online 14 December 2001. doi: 10.1029/2001GC000183.Google Scholar
Nickel, K. G. 1986. Phase-equilibria in the system SiO2–MgO–Al2O3–CaO–Cr2O3 (SMACCR) and their bearing on spinel/garnet lherzolite relationships. Neues Jahrbuch Fur Mineralogie-Abhandlunge 155, 259–87.Google Scholar
Niu, Y., Collerson, K. D., Batiza, R., Immo, J. & Regelous, M. 1999. Origin of enriched-type mid-ocean basalt at ridges far from mantle plumes: The East Pacific Rise at 11°20ʹN. Journal of Geophysical Research 104, 7067–87.Google Scholar
Nowell, G. M., Kempton, P. D., Noble, S. R., Fitton, J. G., Saunders, A. D., Mahoney, J. J. & Taylor, R. N. 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectrometry: insights into the depleted mantle. Chemical Geology 149, 211–33.CrossRefGoogle Scholar
Parlak, O., Höck, V., Kozlu, H. & Delaloye, M. 2004. Oceanic crust generation in an island arc tectonic setting, SE Anatolian orogenic belt (Turkey). Geological Magazine 141, 583603.Google Scholar
Pearce, J. A., Alabaster, T., Shelton, A. W. & Searle, M. P. 1981. The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications. Philosophical Transactions of the Royal Society of London A300, 299317.Google Scholar
Pearson, D. G., Canil, D. & Shirey, S. B. 2004. Mantle samples included in volcanic rocks: xenoliths and diamonds. In The Mantle and Core (Carlson, R.W.), pp. 171275. Elsevier, Treatise on Geochemistry, Volume 2.Google Scholar
Pearce, J. A. & Cann, J. R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19, 290300.CrossRefGoogle Scholar
Pearce, J. A. & Norry, M. J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 3347.Google Scholar
Pearce, J. A. & Peate, D. W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences 23, 281–85.Google Scholar
Pindell, J. L. & Barrett, S. F. 1990. Geological evolution of the Caribbean region: a plate tectonic perspective. In The Caribbean Region (eds Dengo, G. & Case, J. E.), pp. 405–32. Geological Society of America, Geology of North America, Vol. H.Google Scholar
Pindell, J. L., Kennan, L., Maresch, W. V., Stanek, K.-P., Draper, G. & Higgs, R. 2005. Plate-kinematics and crustal dynamics of circum-Caribbean arc-continent interactions: Tectonic controls on basin development in Proto-Caribbean margins. In Caribbean-South American Plate Interactions, Venezuela (eds Lallemant, H. G. A. & Sisson, V. B.), pp. 752. Geological Society of America, Special Paper no.394.Google Scholar
Pindell, J., Maresch, W. V., Martens, U. & Stanek, K. 2012. The Greater Antillean Arc: Early Cretaceous origin and proposed relationship to Central American subduction mélanges: implications for models of Caribbean evolution. International Geology Review 54, 131–43.Google Scholar
Reid, I. & Jackson, H. R. 1981. Oceanic spreading rate and crustal thickness. Marine Geophysical Research 5, 165–72.Google Scholar
Roehrig, E. E., Laó-Dávila, D. A. & Wolfe, A. L. 2015. Serpentinization history of the Río Guanajibo serpentinite body, Puerto Rico. Journal of South American Earth Sciences 62, 195217.CrossRefGoogle Scholar
Salters, V. J. M. & White, W. M. 1998. Hf isotope constraints on mantle evolution. Chemical Geology 145, 447–60.Google Scholar
Schellekens, J. H. 1998 a. Geochemical evolution and tectonic history of Puerto Rico. In Tectonics and Geochemistry of the Northeastern Carribean (eds Lidiak, E. G. & Larue, D. K.), pp. 3566. Geological Society of America, Special Papers no. 322.Google Scholar
Schellekens, J. H. 1998 b. Composition, metamorphism grade, and origin of metabasites in the Bermeja Complex, Puerto Rico. International Geology Review 40, 722–47.Google Scholar
Shervais, J. W. 2001. Birth, death, and resurrection: the life cycle of suprasubduction zone ophiolites. Geochemistry, Geophysics, Geosystems, published online 31 January 2001. doi: 10.1029/2000GC000080.Google Scholar
Sinton, C. W., Duncan, R. A., Storey, M., Lewis, J. & Estrada, J. J. 1998. An oceanic flood basalt province within the Caribbean plate. Earth and Planetary Science Letters 155, 221–35.Google Scholar
Smith, A. & Schellekens, J. H. 1998. Batholiths as markers of tectonic change in the northeastern Caribbean. In Tectonics and Geochemistry of the Northeastern Carribean (eds Lidiak, E. G. & Larue, D. K.), pp. 99121. Geological Society of America, Special Papers no. 322.Google Scholar
Stern, R. J. & Bloomer, S. H. 1992. Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geological Society of America Bulletin 104, 1621–36.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Thompson, P. M. E., Kempton, P. D., White, R. V., Kerr, A. C., Tarney, J., Saunders, A. D., Fitton, J. G. & McBirney, A. 2003. Hf–Nd isotope constraints on the origin of the Cretaceous Caribbean plateau and its relationship to the Galápagos plume. Earth and Planetary Science Letters 217, 5975.Google Scholar
Veizer, J. 1989. Sr isotopes in seawater through time. Annual Review of Earth Planetary Sciences 17, 141–67.CrossRefGoogle Scholar
Volckmann, R. P. 1984. Geologic map of the Puerto Real Quadrangle, Southwest Puerto Rico. In Miscellaneous Investigations Series, Map I-1559, scale 1:20,000. United States Geological Survey.Google Scholar
Wakabayashi, J. & Dilek, Y. 2003. What constitutes ‘emplacement’ of an ophiolite? Mechanisms and relationship to subduction initiation and formation of metamorphic soles. In Ophiolites in Earth History (eds Y. Dilek & R. T. Robinson), pp. 427–47. Geological Society of London, Special Publication no. 218.Google Scholar
Walker, R. J., Storey, M., Kerr, A.C., Tarney, J. & Arndt, N. T. 1999. Implications of 187Os isotopic heterogeneities in a mantle plume: Evidence from Gorgona Island and Curaçao. Geochimica et Cosmochimica Acta 63, 713–28.Google Scholar
Wänke, H. 1981. Constitution of terrestrial planets. Philosophical Transactions of the Royal Society of London, A 303, 287302.Google Scholar
Webb, S. A. C. & Wood, B. J. 1986. Spinel–pyroxene–garnet relationships and their dependence on Cr/Al ratio. Contributions to Mineralogy and Petrology 92, 471–80.Google Scholar
Wells, P. R. A. 1977. Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology 62, 129–39.Google Scholar
White, W. M. & Patchett, P. J. 1984. Hf–Nd–Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust–mantle evolution. Earth and Planetary Science Letters 67, 167–85.Google Scholar
White, R. V., Tarney, J., Kerr, A. C., Saunders, A. D., Kempton, P. D., Pringle, M. S. & Klaver, G. T. 1999. Modification of an oceanic plateau, Aruba, Dutch Caribbean: Implications for the generation of continental crust. Lithos 46, 4368.Google Scholar
Wilkinson, J. F. G. & Le Maitre, R. W. 1987. Upper mantle amphiboles and micas and TiO2, K2O, and P2O5 abundances and 100 Mg/(Mg+Fe2+) ratios of common basalts and andesites: Implications for modal mantle metasomatism and undepleted mantle compositions. Journal of Petrology 28, 3773.Google Scholar