Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T00:57:56.189Z Has data issue: false hasContentIssue false

Multiple recombinational events within the 84 W locus of Ascorolus immersus

Published online by Cambridge University Press:  14 April 2009

A. Paszewski
Affiliation:
Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, ul. Rakowiecka 36, Poland
W. Prażmo
Affiliation:
Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, ul. Rakowiecka 36, Poland
E. Jaszczuk
Affiliation:
Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, ul. Rakowiecka 36, Poland
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Multiple recombinational events within a gene were studied by tetrad analysis of multipoint intragenic crosses. It was found that a considerarle proportion of double-site conversions can arise as two separate but correlated events. The same was true for conversion and crossing-over associated with it. The data point to a possibility of multiple recombinational events involving both conversions and cross-overs, occurring as successive rounds of recombination within a single recombinational process. Some of the results suggest that more than two chromatids may be involved in such a process. The results are discussed in terms of different recombination models.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

References

REFERENCES

Baranowska, H. (1970). Intragenic recombination pattern within locus of Ascobolus immersus in the presence of outside markers. Genetical Research, Cambridge 16, 185206.CrossRefGoogle ScholarPubMed
Boon, T. & Zinder, N. D. (1969). A mechanism for genetic recombination generating one parent and one recombinant. Proceedings of the National Academy of Sciences, U.S.A. 64, 573577.CrossRefGoogle ScholarPubMed
Case, M. E. & Giles, N. H. (1964). Allelic recombination in Neurospora. Tetrad analysis of three point cross within the pan-2 locus. Genetics 49, 529540.CrossRefGoogle ScholarPubMed
Fincham, I. R. S. & Holliday, R. (1970). An explanation of fine structure map expansion in terms of excision repair. Molecular and General Genetics 109, 309322.CrossRefGoogle ScholarPubMed
Fogel, S., Hurst, D. D. & Mortimer, R. K. (1970). Gene conversion in unselected tetrads from multipoint crosses. Second Stadler's Symposium, Columbia, Mo. (in the Press).Google Scholar
Fogel, S. & Mortimer, R. K. (1969). Informational transfer in meiotic gene conversion. Proceedings of the National Academy of Sciences, U.S.A. 62, 96103.CrossRefGoogle ScholarPubMed
Fogel, S. & Mortimer, R. K. (1970). Fidelity of mitotic gene-conversion in yeast. Molecular and General Genetics 109, 177185.CrossRefGoogle Scholar
Holliday, R. (1964). A mechanism for gene conversion in fungi. Genetical Research, Cambridge 5, 283304.CrossRefGoogle Scholar
Holliday, R. (1968). Genetic recombination in fungi. In Replication and Recombination of Genetic material (ed. by Peacock, W. J. and Brock, R. D.), p. 157, Canberra.Google Scholar
Howard-Flanders, P., Theriot, L. & Stedeford, J. B. (1969). Some properties of excision-defective recombination-deficient mutants of Escherichia coli K-12. Journal of Bacteriology 97, 11341141.CrossRefGoogle ScholarPubMed
Kruszewska, A. & Gajewski, W. (1967). Recombination within the Y locus in Ascobolus immersus. Genetical Research, Cambridge 9, 159177.CrossRefGoogle Scholar
Leblon, G. & Rossignol, J. L. (1970). Sur les facteurs influencant les fréquences de conversion chez les Ascobolus immersus. Congrées de la Société française de Génétique (in the Press).Google Scholar
Lissouba, P., Mousseau, J., Rizet, G. & Rossignol, J. L. (1962). Fine structure of genes in ascomycete Ascorolus immersus. Advances of Genetics 11, 343380.CrossRefGoogle Scholar
Marcou, D. (1969). Sur la nature des recombinaisons intracistroniques et sur leurs répercussions sur la ségrégation de marqueurs extériours chez le Podospora anserina. Comptes Rendues herdomadaires des séances de l'Academic des sciences, Paris (Série D) 269, 23622365.Google Scholar
Mousseau, J. (1966). Sur les variations de fréquence de conversion au niveau de divers sites d'un même locus. Comptes Rendues herdomadaires des séances de Academie des sciences, Paris 262, 12541257.Google Scholar
Mousseau, J. (1967). Analyse de la structure fine d'un gène chez Ascobolus immersus. Contribution à l'étude de la recombinaison méiotique. Ph.D. thesis, University of Paris.Google Scholar
Murray, N. E. (1970). Recombination events that span sites within neighbouring gene loci of Neurospora. Genetical Research, Cambridge 15, 109121.CrossRefGoogle ScholarPubMed
Paszewski, A. (1967). A study of simultaneous conversion in linked genes in Ascobolus immersus. Genetical Research, Cambridge 10, 121126.Google Scholar
Paszewski, A. (1970). Gene conversion: orservations on the DNA hybrid models. Genetical Research, Cambridge 15, 5564.CrossRefGoogle ScholarPubMed
Paszewski, A. & Prażmo, W. (1969). The bearing of mutant and cross specificity on the pattern of intragenic recombination. Genetical Research, Cambridge 14, 3343.CrossRefGoogle ScholarPubMed
Paszewski, A., Surzycki, S. & Mańkowska, M. (1966). Chromosome maps in Ascobolus immersus (Rizet's strain). Acta Societatis Botanicorum Poloniae 35, 181188.Google Scholar
Phitchard, R. H. (1960). Localized negative interference and its bearing on models of gene recombination. Genetical Research, Cambridge 1, 124.CrossRefGoogle Scholar
Putrament, A. (1967). On the mechanism of mitotic recombination in Aspergillus nidulans. II. Simultaneous recombination within two closely linked cistrons. Molecular and General Genetics 100, 321336.CrossRefGoogle ScholarPubMed
Rizet, G. & Rossignol, J. L. (1963). Sur la dissymétrie de certaines conversions et sur la dimension de l'erreur de copie chez l'Ascobolus immersus. Revista de Biologica 3, 261268.Google Scholar
Rossignol, J. L. (1964). Phénomènes de recombinaison intragénique et unité fonctionnelle d'un locus chez l'Ascobolus immersus. Thesis, University de Paris.Google Scholar
Rossignol, J. L. (1967). Contribution a l'étude des phénomènes de recombinaison intragénique. Ph.D. thesis, University de Paris.Google Scholar
Stadler, D. R. & Kariya, B. (1969). Intragenic recombination at the mtr locus of Neurospora with segregation at an unselected site. Genetics 63, 291316.Google Scholar
Stahl, F. (1969). On the way to think arout gene conversion. Genetics 61 (suppl.), 113.Google Scholar
Touré, B. & Marcou, D. (1970). Nature, dimension et limités des évenéments de recombinaisons génétique à l'intérieur d'une unité de transcription polycistronique chez le Podospora anserina. Comptes Rendues herdomadaires des séances de l'Academic des Sciences, Paris 270, 619621.Google Scholar
Whitehouse, H. L. K. (1963). A theory of crossing-over by means of hybrid deoxyribo-nucleic acid. Nature, 199, 10341040.Google Scholar
Whitehouse, H. L. K. (1967). Secondary crossing-over. Nature, 215, 13521359.CrossRefGoogle ScholarPubMed
Zimmerman, S. (1968). Enzyme studies on the products of mitotic gene conversion in Sac-charomyces cerevisiae. Molecular and General Genetics 101, 171184.Google Scholar