Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T16:33:48.657Z Has data issue: false hasContentIssue false

Genetic variation of wild mouse populations in southern Germany: I. Cytogenetic study

Published online by Cambridge University Press:  14 April 2009

Sabine Adolph
Affiliation:
Max-Planck-Institut für Biologie, Abteilung Immungenetik, Corrensstr. 42, 7400 Tübingen, F.R.G.
Jan Klein
Affiliation:
Max-Planck-Institut für Biologie, Abteilung Immungenetik, Corrensstr. 42, 7400 Tübingen, F.R.G.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some 400 wild mice (Mus domesticus) from southern Germany (the triangle formed by the cities Tübingen, Heidenheim and Friedrichshafen) were karyotyped and, in 243 of them, the chromosome compositions were determined by banding techniques. Virtually all mice tested carried at least one pair of metacentric chromosomes; some mice had up to ten metacentric chromosomes. Based on their chromosome composition, five mouse populations could be distinguished. Population I was characterized by the diploid chromosome number of 2n = 38 and the presence of two copies of metacentric chromosome Rb(4.12)1Tu. This translocation was also found in virtually all mice captured in southern Germany, almost always in a homozygous state. Mice of other populations had extra metacentric chromosomes Rb(5.15)15Tu (population II), Rb(13.14)17Tu (population III), Rb(5.14)18Tu (population IV) and Rb(11.13)6Tu (population V). In addition, rare variants (1 or 2 mice) were found in the different populations, which were heterozygous for additional metacentric chromosomes. Population V was quite heterogeneous in that it contained up to five metacentric chromosomes in addition to those mentioned. The number and the composition of these metacentric chromosomes varied from place to place. With the exception of population I, the individual populations occupied geographically distinct areas: Representatives of population I were found concentrated in one area, but, in addition, some were scattered over the entire studied region.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

Adolph, S. & Klein, J. (1981). Robertsonian variation in Mus musculus from Central Europe, Spain, and Scotland. Journal of Heredity 72, 219221.CrossRefGoogle ScholarPubMed
Baranov, V. S. & Dyban, A. P. (1971). A new marker Robertsonian translocation (centric fusion of autosomes) in the laboratory mouse Mus musculus (Russ.) Akad. Nauk SSSR 13, 820829.Google Scholar
Brooker, P. C. & Berry, R. J. (1981). Robertsonian translocations in wild mice. Mouse News Letter 64, 65.Google Scholar
Britton-Davidian, J., Bonhomme, F., Croset, H., Capanna, E. & Tahler, L. (1980). Variabilité génétique chez les populations de Souris (genre Mus L.) à nombre chromosomique réduit. C.R. Acad. Sci. Paris, D 290, 195198.Google Scholar
Capanna, E., Civitelli, M.-V. & Cristaldi, M. (1977). Chromosomal rearrangement, reproductive isolation and speciation in Mammals. The case of Mus musculus. Biol. Zool. 44, 213246.CrossRefGoogle Scholar
Capanna, E., Gropp, A., Winking, H., Noack, G. & Civitelli, M.-V. (1976). Robertsonian metacentrics in mouse. Chromosoma 58, 341353.CrossRefGoogle Scholar
Chakrabarti, S. & Chakrabarti, A. (1977). Spontaneous Robertsonian fusion leading to karyotype variation in the house mouse - first report from Asia. Experientia 33, 175177.CrossRefGoogle ScholarPubMed
Cox, E. K. (1926). The chromosomes of the house mouse. J. Morphology 43, 4556.CrossRefGoogle Scholar
Evans, P. E., Breckon, G. & Ford, C. E. (1964). An airdrying method for meiotic preparations from mammalian testes. Cytogenetics 3, 289294.CrossRefGoogle ScholarPubMed
Evans, E. P., Lyon, M. F. & Daglish, M. (1964). A mouse translocation giving a metacentric marker chromosome. Cytogen. Cell Gen. 6, 105119.CrossRefGoogle Scholar
Figueroa, F., Zaleska-Rutczynska, Z., Adolph, S., Nadeau, J. H. & Klein, J. (1983). Genetic variation of wild mouse populations in southern Germany. II. Serological study. Genet. Res., Camb. 41, 135144.CrossRefGoogle ScholarPubMed
Gropp, A., Tettenborn, U. & Lehman, E. V. (1969). Chromosomenuntersuchungen bei der Tabakmaus (M. poschivainus) und bei den Hybriden mit der Laboratoriumsmaus. Experientia 25, 875876.CrossRefGoogle Scholar
Gropp, A., Winking, H., Zech, L. & Müller, H. (1972). Robertsonian chromosomal variation and identification of metacentric chromosomes in feral mice. Chromosoma 30, 265288.CrossRefGoogle Scholar
Gropp, A. & Winking, H. (1981). Robertsonian translocations: Cytology, meiosis, segregation patterns and biological consequences of heterozygosity. In Biology of the House Mouse (ed. Berry, R. J.), pp. 141181. London: Academic Press.Google Scholar
Jotterand, M. (1972). Le polymorphisme chromosomique des Mus (Leggadas) africans. Cytogénétique, Zoogéographie, évolution. Rev. Suisse Zool. 79, 287359.CrossRefGoogle Scholar
Lehman, E. V. & Radbruch, A. (1977). Robertsonian translocations in Mus musculus from Sicily. Experientia 33, 10251026.CrossRefGoogle Scholar
Leonard, A. & DeKnudt, G. H. (1967). A new marker for chromosome studies in the mouse. Nature 214, 504505.CrossRefGoogle ScholarPubMed
Robinson, T. J. (1978). Preliminary report of a Robertsonian translocation in an isolated feral Mus musculus population. Mamm. Chrom. Newsletter 19, 8485.Google Scholar
Seabright, M. (1971). A rapid banding technique for human chromosomes. The Lancet, ii, 971972.CrossRefGoogle Scholar
Spirito, F., Modesti, A., Perticone, P., Cristaldi, M., Federci, R. & Rizzoni, M. (1980). Mechanisms of fixation and accumulation of centric fusions in natural populations of Mus musculus L. Karyological analysis of a hybrid zone between two populations in the central Apennines. Evolution 34, 453466.CrossRefGoogle ScholarPubMed
Triman, K. L., Davisson, M. T. & Roderick, T. H. (1975). A method for preparing chromosomes from peripheral blood in the mouse. Cytogen. Cell Gen. 15, 166176.CrossRefGoogle ScholarPubMed
Wahrman, J. & Gotein, R. (1972). Hybridization in nature between two chromosome forms of spiny mice. Chromosomes Today 3, 228237.Google Scholar
Wahrman, J. & Gourevitz, P. (1973). Extreme chromosome variability in a colonizing rodent. Chromosomes Today 4, 399424.Google Scholar
White, B. J. & Tijo, J. H. (1967). A mouse translocation with 38 and 39 chromosomes, but normal N.F. Hereditas 58, 284296.CrossRefGoogle ScholarPubMed
White, M. D. J. (1978). Chain processes in chromosomal speciation. System. Zool. 27, 285298.CrossRefGoogle Scholar
Winking, H., Gropp, A. & Bulfield, G. (1981). Private communication. Mouse News Letter 64, 70.Google Scholar