Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T08:18:57.341Z Has data issue: false hasContentIssue false

The flagella of temporary dikaryons of Chlamydomonas reinhardii

Published online by Cambridge University Press:  14 April 2009

David Starling
Affiliation:
University of Edinburgh, Department of Zoology, West Mains Road, Edinburgh, EH9 3JT
John Randall
Affiliation:
University of Edinburgh, Department of Zoology, West Mains Road, Edinburgh, EH9 3JT
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The structure and function of flagella are genetically determined and single gene mutants – for example, lacking in motility or of abnormal flagellar length – have previously been investigated. When such mutants are crossed with wild-type, temporary dikaryons – prozygotes – are formed with two nuclei and a common cytoplasm. The properties of the four flagella – two originally abnormal – have been observed as a function of time. In wild-type × non-motile mutant crosses, restoration of motility has been observed in a number of cases. If the dikaryons are deflagellated regeneration occurs, together with restoration of motility or of normal length to the previously abnormal pair. Complementation at the cytoplasmic level has been found in paired mutants.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

References

REFERENCES

Cavalier-Smith, T. (1967). Organelle development in Chlamydomonas reinhardii. Ph.D. thesis, University of London.Google Scholar
Chasey, D. (1969). Observations on the central pair of microtubules from the cilia of Tetrahymena pyriformis. Journal of Cell Science 5, 453458.CrossRefGoogle ScholarPubMed
Ebersold, W. T. (1967). Chlamydomonas reinhardii: heterozygous diploid strains. Science, N.Y. 157, 447448.CrossRefGoogle Scholar
Ephrussi, B. & Weiss, M. C. (1965). Interspecific hybridisation of somatic cells. Proceedings of the National Academy of Sciences, U.S.A. 53, 10401042.CrossRefGoogle ScholarPubMed
Harris, H. (1970). Nucleus and Cytoplasm, 2nd ed. Oxford.Google Scholar
Harris, H. & Watkins, J. F. (1965). Hybrid cells derived from mouse and man: artificial heterokaryons of mammalian cells from different species. Nature, London 205, 640646.CrossRefGoogle ScholarPubMed
Hopkins, J. M. (1970). Subsidiary components of the flagella of Chlamydomonas reinhardii. Journal of Cell Science 7, 823839.CrossRefGoogle ScholarPubMed
Hookes, D. E., SirRandall, J. & Hopkins, J. M. (1968). Problems of morphopoiesis and macromolecular structure in cilia. Symposium of the International Society for Cell Biology 6, 115173.Google Scholar
Jacobs, M., Hopkins, J. M. & SirRandall, J. (1969). Biochemistry of Chlamydomonas flagella. Proceedings of the Royal Society of London B 173, 6162.Google ScholarPubMed
Jacobs, M. & McVittie, A. (1970). Identification of the flagellar proteins of Chlamydomonas reinhardii. Experimental Cell Research 63, 5361.CrossRefGoogle ScholarPubMed
Levine, R. P. & Ebersold, W. T. (1960). Genetics and cytology of Chlamydomonas. Annual Review of Microbiology 14, 197216.CrossRefGoogle ScholarPubMed
Lewin, R. A. (1954). Mutants of C. moewusii with impaired motility. Journal of General Microbiology 11, 358363.CrossRefGoogle Scholar
McVittie, A. C. (1969 a). Studies on flagella-less, stumpy and short flagellum mutants of Chlamydomonas reinhardii. Proceedings of the Royal Society of London B 173, 5960.Google ScholarPubMed
McVittie, A. C. (1969 b). Flagellum mutants of Chlamydomonas reinhardii: genetic and electron microscope studies. Ph.D. Thesis, University of London.Google Scholar
Poole, A. R., Howell, J. I. & Lucy, J. A. (1970). Lysolecithin and cell fusion. Nature, London 227, 810814.CrossRefGoogle ScholarPubMed
Power, J. B., Cummins, S. E. & Cocking, E. C. (1970). Fusion of isolated plant protoplasts. Nature, London 225, 10161018.CrossRefGoogle ScholarPubMed
SirRandall, J. (1969). The flagellar apparatus as a model organelle for the study of growth and morphopoiesis. Proceedings of the Royal Society of London B 173, 3158.Google Scholar
SirRandall, J., Cavalier-Smith, T., McVittie, A., Warr, J. R. & Hopkins, J. M. (1967). Developmental and control processes in the basal bodies and flagella of Chlamydomonas reinhardii. Developmental Biology, Supplement 1, pp. 4383.Google Scholar
SirRandall, J., Warr, J. R., Hopkins, J. M. & McVittie, A. (1964). A single-gene mutation of Chlamydomonas reinhardii affecting motility: a genetic and electron microscope study. Nature, London 203, 912914.CrossRefGoogle ScholarPubMed
Rosenbaum, J. L. & Child, F. M. (1967). Flagellar regeneration in protozoan flagellates. Journal of Cell Biology 34, 345364.CrossRefGoogle ScholarPubMed
Rosenbaum, J. L., Moulder, J. E. & Ringo, D. L. (1969). The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. Journal of Cell Biology 41, 600619.CrossRefGoogle Scholar
Sager, R. & Granick, S. (1954). Nutritional control of sexuality in Chlamydomonas reinhardii. Journal of General Physiology 37, 729742.CrossRefGoogle Scholar
Starling, D. (1969). Complementation tests on closely linked flagellar genes in Chlamydomonas reinhardii. Genetic Research, Cambridge 14, 343347.CrossRefGoogle ScholarPubMed
Starling, D. (1970). Genetic morphopoietic and microbeam irradiation studies on the flagella of Chlamydomonas reinhardii. Ph.D. Thesis, University of London.Google Scholar
Sueoka, N. (1960). Mitotic replication of DNA in C. reinhardii. Proceedings of the National Academy of Sciences, U.S.A. 46, 8391.CrossRefGoogle Scholar
Warr, J. R., McVittie, A., SirRandall, J. & Hopkins, J. M. (1966). Genetic control of flagellar structure in C. reinhardii. Genetic Research, Cambridge 7, 335351.CrossRefGoogle Scholar